• 排序算法


    package cn.com.yitong.test;

    import java.util.Arrays;
    import org.junit.Test;

    public class DemoTest {
    @Test
    public void bubbleSort() {
    /**
    * 冒泡排序
    */
    int[] arr ={11,2,33,4,51,7,10,22};
    int temp ;
    for(int i =0;i<arr.length-1;i++){
    for(int j =0;j<arr.length-i-1;j++){
    if(arr[j+1]<arr[j]){
    temp =arr[j];
    arr[j]=arr[j+1];
    arr[j+1]=temp;
    }
    }
    }
    System.out.println(Arrays.toString(arr));
    System.out.println("success");
    }

    /**
    * 快速排序
    * 从数列中挑出一个元素,称为“基准”
    * 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分割之后,
    * 该基准是它的最后位置。这个称为分割(partition)操作。
    * 递归地把小于基准值元素的子数列和大于基准值元素的子数列排序。
    *
    * @param numbers
    * @param start
    * @param end
    */
    public static void main(String[] args) {
    int[] numbers ={1,12,9,7,66,36,25,10};
    int start = 0;
    int end = 7;
    quickSort(numbers, start, end);
    }
    public static void quickSort(int[] numbers, int start, int end) {
    if (start < end) {
    int base = numbers[start]; // 选定的基准值(第一个数值作为基准值)
    int temp; // 记录临时中间值
    int i = start, j = end;
    do {
    while ((numbers[i] < base) && (i < end))
    i++;
    while ((numbers[j] > base) && (j > start))
    j--;
    if (i <= j) {
    temp = numbers[i];
    numbers[i] = numbers[j];
    numbers[j] = temp;
    i++;
    j--;
    }
    } while (i <= j);
    if (start < j)
    quickSort(numbers, start, j);
    if (end > i)
    quickSort(numbers, i, end);
    }
    }

    }

    ====================================================================================================================================

    /**  
     *  冒泡法排序   
     *  比较相邻的元素。如果第一个比第二个小,就交换他们两个。 
     *  对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最小的数。   
     *  针对所有的元素重复以上的步骤,除了最后一个。  
     *  持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。 
    
     *   
     * @param numbers  
     *            需要排序的整型数组  
     */  
    public static void bubbleSort01(int[] numbers) {   
        int temp; // 记录临时中间值   
        int size = numbers.length; // 数组大小   
        for (int i = 0; i < size - 1; i++) {   
            for (int j = i + 1; j < size; j++) {   
                if (numbers[i] < numbers[j]) { // 交换两数的位置   
    temp = numbers[i]; numbers[i] = numbers[j]; numbers[j] = temp; } } } }
    复制代码

    注意:以上不知是什么排序,将基准位置的元素和后面的元素进行比较,如果基准位置值比后面元素小,则交换位置,交换后的元素为新的基准元素。以下才是真正的冒泡排序。

    复制代码
    public static void bubbleSort(int[] a) {
        int temp;
        int size = a.length;
        for(int i=1; i<size; i++) {
            for(int j=0; j<size-i; j++) {
                if(a[j] < a[j+1]) {
                    temp = a[j];
                    a[j]=a[j+1];
                    a[j+1]=temp;
                }
            }
            for(int aa : a)
                System.out.print(aa+",");
            System.out.println();
        }
    }
    复制代码

    二、快速排序

      快速排序使用分治法策略来把一个序列分为两个子序列。

    复制代码
    /**  
     * 快速排序 
     *    
     *  从数列中挑出一个元素,称为“基准”  
     *  重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分割之后,  
     *  该基准是它的最后位置。这个称为分割(partition)操作。  
     *  递归地把小于基准值元素的子数列和大于基准值元素的子数列排序。  
     *  
     * @param numbers  
     * @param start  
     * @param end  
     */  
    public static void quickSort(int[] numbers, int start, int end) {   
        if (start < end) {   
            int base = numbers[start]; // 选定的基准值(第一个数值作为基准值)   
            int temp; // 记录临时中间值   
            int i = start, j = end;   
            do {   
                while ((numbers[i] < base) && (i < end))   
                    i++;   
                while ((numbers[j] > base) && (j > start))   
                    j--;   
                if (i <= j) {   
                    temp = numbers[i];   
                    numbers[i] = numbers[j];   
                    numbers[j] = temp;   
                    i++;   
                    j--;   
                }   
            } while (i <= j);   
            if (start < j)   
                quickSort(numbers, start, j);   
            if (end > i)   
                quickSort(numbers, i, end);   
        }   
    }  
    复制代码

     如下为完全符合快速排序定义的算法:

    复制代码
    public static void quickSort01(int[] a, int start, int end) {
        if(start >= end)
            return;
        int i = start;
        int j = end;
        int base = a[start];
        while(i != j) {
            while(a[j] >= base && j > i)
                j--;
            while(a[i] <= base && i < j)
                i++;
            if(i < j) {
                int temp = a[i];
                a[i] = a[j];
                a[j] = temp;
            }
        }
        a[start] = a[i];
        a[i] = base;
        te(a, start, i - 1);
        te(a, i + 1, end);
    }
    复制代码

    三、选择排序

      选择排序是一种简单直观的排序方法,每次寻找序列中的最小值,然后放在最末尾的位置。

    复制代码
    /**  
     * 选择排序
     * 在未排序序列中找到最小元素,存放到排序序列的起始位置  
     * 再从剩余未排序元素中继续寻找最小元素,然后放到排序序列起始位置。  
     * 以此类推,直到所有元素均排序完毕。  
     *   
     * @param numbers  
     */  
    public static void selectSort(int[] numbers) {   
        int size = numbers.length;
       int temp;   
        for (int i = 0; i < size; i++) {   
            int k = i;   
            for (int j = size - 1; j >i; j--)  {   
                if (numbers[j] < numbers[k]) {
             k = j;   
           }
            }   
            temp = numbers[i];   
            numbers[i] = numbers[k];   
            numbers[k] = temp;   
        }   
    } 
    复制代码

    四、插入排序

      插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。其具体步骤参见代码及注释。

    复制代码
    /**  
     * 插入排序   
     *   
     *  从第一个元素开始,该元素可以认为已经被排序 
     *  取出下一个元素,在已经排序的元素序列中从后向前扫描  
     *  如果该元素(已排序)大于新元素,将该元素移到下一位置   
     *  重复步骤3,直到找到已排序的元素小于或者等于新元素的位置   
     *  将新元素插入到该位置中   
     *  重复步骤2    
     * @param numbers  
     */  
    public static void insertSort(int[] numbers) {   
        int size = numbers.length, temp, j;   
        for(int i=1; i<size; i++) {   
            temp = numbers[i];   
            for(j = i; j > 0 && temp < numbers[j-1]; j--)   
                numbers[j] = numbers[j-1];   
            numbers[j] = temp;   
        }   
    }  
    复制代码

    五、归并排序

      归并排序是建立在归并操作上的一种有效的排序算法,归并是指将两个已经排序的序列合并成一个序列的操作。

    复制代码
    /**  
     * 归并排序   
     *   
     *  申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列 
     *  设定两个指针,最初位置分别为两个已经排序序列的起始位置   
     *  比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置 
     *  重复步骤3直到某一指针达到序列尾   
     *  将另一序列剩下的所有元素直接复制到合并序列尾  
     *   
     * @param numbers  
     */  
    public static void mergeSort(int[] numbers, int left, int right) {   
        int t = 1;// 每组元素个数   
        int size = right - left + 1;   
        while (t < size) {   
            int s = t;// 本次循环每组元素个数   
            t = 2 * s;   
            int i = left;   
            while (i + (t - 1) < size) {   
                merge(numbers, i, i + (s - 1), i + (t - 1));   
                i += t;   
            }   
            if (i + (s - 1) < right)   
                merge(numbers, i, i + (s - 1), right);   
        }   
    }  
    复制代码
    复制代码
    /**  
     * 归并算法实现  
     *   
     * @param data  
     * @param p  
     * @param q  
     * @param r  
     */  
    private static void merge(int[] data, int p, int q, int r) {   
        int[] B = new int[data.length];   
        int s = p;   
        int t = q + 1;   
        int k = p;   
        while (s <= q && t <= r) {   
            if (data[s] <= data[t]) {   
                B[k] = data[s];   
                s++;   
            } else {   
                B[k] = data[t];   
                t++;   
            }   
            k++;   
        }   
        if (s == q + 1)   
            B[k++] = data[t++];   
        else  
            B[k++] = data[s++];   
        for (int i = p; i <= r; i++)   
            data[i] = B[i];   
    }  
    复制代码
  • 相关阅读:
    贵有恒
    二叉树的中序遍历
    001.3或5的倍数
    静态成员的语法总结及应用-单例模式
    力扣42题(接雨水)
    算法笔记之二分查找
    素数筛算法之寻找每个数的最小素因子
    素数筛的算法感悟
    一维数组的逆序存放问题
    关于c++入门的几个基本代码之求和
  • 原文地址:https://www.cnblogs.com/wpf-7/p/9647112.html
Copyright © 2020-2023  润新知