本文的结构如下:
- 一、LinkedHashMap 的 Javadoc 文档注释和简要说明
- 二、LinkedHashMap 的内部实现:一些扩展属性和构造函数
- 三、LinkedHashMap 的 put 操作和扩容
- 四、LinkedHashMap 的 get 操作
- 五、LinkedHashMap 的 remove 操作
一、LinkedHashMap 的 Javadoc 文档注释和简要说明
先膜拜下 LinkedHashMap 的 Javadoc,只能说很佩服,这文档注释把 LinkedHashMap 的主要特点都罗列出来了。看懂这注释,然后再对照源码,可以理解个七七八八八,也不会奇怪说各路总结那么多,都是哪来的。以下是 Javadoc 的几点摘抄:
- LinkedHashMap 是 Map 接口的 hash table 和 linked list 实现类,内部所有节点维护了双链表,迭代顺序可预测,默认按照插入顺序进行迭代输出(已存在的 k 重新 put 不影响顺序,因为 m.containsKey(k) 会先返回 true ),这种特性对于需要有序的 Map 参数来说很有用,而且效率优于 TreeMap。
- LinkedHashMap 还提供了构造器用于指定按照访问顺序进行迭代输出,即按照最近最少访问到最近访问的访问顺序:from least-recently accessed to most-recently (access-order)。这种特性适合做 LRU 缓存(least-recently used cache),即继承 LinkedHashMap ,重写 removeEldestEntry(Map.Entry) 方法来指定什么时候移除的策略。
- LinkedHashMap 继承了 HashMap,基本操作(add, contains and remove)可以认为是O(1),因需要维护双链表,性能可能会略低于 HashMap,但是有一个例外:LinkedHashMap 的迭代只与实际大小有关(毕竟可以依靠双链表进行迭代),而 HashMap 的迭代则与容量有关,性能会相对低于 LinkedHashMap。
- 同样不适合多线程操作,需要额外进行同步,比如使用 Collections.synchronizedMap 。
- 迭代器也是 fail-fast,而且并不保证出现有并发修改就百分百抛出 ConcurrentModificationException,而是尽可能检查到,因此只适用于检测 bug(抛出 ConcurrentModificationException 说明有问题,但是没有抛出来不能说明没问题)。
可以看出,LinkedHashMap 有 2个 主要用途:
- 有序的 HashMap
- LRU cache
LinkedHashMap 的 Javadoc:
/** * <p>Hash table and linked list implementation of the <tt>Map</tt> interface, * with predictable iteration order. This implementation differs from * <tt>HashMap</tt> in that it maintains a doubly-linked list running through * all of its entries. This linked list defines the iteration ordering, * which is normally the order in which keys were inserted into the map * (<i>insertion-order</i>). Note that insertion order is not affected * if a key is <i>re-inserted</i> into the map. (A key <tt>k</tt> is * reinserted into a map <tt>m</tt> if <tt>m.put(k, v)</tt> is invoked when * <tt>m.containsKey(k)</tt> would return <tt>true</tt> immediately prior to * the invocation.) * * <p>This implementation spares its clients from the unspecified, generally * chaotic ordering provided by {@link HashMap} (and {@link Hashtable}), * without incurring the increased cost associated with {@link TreeMap}. It * can be used to produce a copy of a map that has the same order as the * original, regardless of the original map's implementation: * <pre> * void foo(Map m) { * Map copy = new LinkedHashMap(m); * ... * } * </pre> * This technique is particularly useful if a module takes a map on input, * copies it, and later returns results whose order is determined by that of * the copy. (Clients generally appreciate having things returned in the same * order they were presented.) * * <p>A special {@link #LinkedHashMap(int,float,boolean) constructor} is * provided to create a linked hash map whose order of iteration is the order * in which its entries were last accessed, from least-recently accessed to * most-recently (<i>access-order</i>). This kind of map is well-suited to * building LRU caches. Invoking the {@code put}, {@code putIfAbsent}, * {@code get}, {@code getOrDefault}, {@code compute}, {@code computeIfAbsent}, * {@code computeIfPresent}, or {@code merge} methods results * in an access to the corresponding entry (assuming it exists after the * invocation completes). The {@code replace} methods only result in an access * of the entry if the value is replaced. The {@code putAll} method generates one * entry access for each mapping in the specified map, in the order that * key-value mappings are provided by the specified map's entry set iterator. * <i>No other methods generate entry accesses.</i> In particular, operations * on collection-views do <i>not</i> affect the order of iteration of the * backing map. * * <p>The {@link #removeEldestEntry(Map.Entry)} method may be overridden to * impose a policy for removing stale mappings automatically when new mappings * are added to the map. * * <p>This class provides all of the optional <tt>Map</tt> operations, and * permits null elements. Like <tt>HashMap</tt>, it provides constant-time * performance for the basic operations (<tt>add</tt>, <tt>contains</tt> and * <tt>remove</tt>), assuming the hash function disperses elements * properly among the buckets. Performance is likely to be just slightly * below that of <tt>HashMap</tt>, due to the added expense of maintaining the * linked list, with one exception: Iteration over the collection-views * of a <tt>LinkedHashMap</tt> requires time proportional to the <i>size</i> * of the map, regardless of its capacity. Iteration over a <tt>HashMap</tt> * is likely to be more expensive, requiring time proportional to its * <i>capacity</i>. * * <p>A linked hash map has two parameters that affect its performance: * <i>initial capacity</i> and <i>load factor</i>. They are defined precisely * as for <tt>HashMap</tt>. Note, however, that the penalty for choosing an * excessively high value for initial capacity is less severe for this class * than for <tt>HashMap</tt>, as iteration times for this class are unaffected * by capacity. * * <p><strong>Note that this implementation is not synchronized.</strong> * If multiple threads access a linked hash map concurrently, and at least * one of the threads modifies the map structurally, it <em>must</em> be * synchronized externally. This is typically accomplished by * synchronizing on some object that naturally encapsulates the map. * * If no such object exists, the map should be "wrapped" using the * {@link Collections#synchronizedMap Collections.synchronizedMap} * method. This is best done at creation time, to prevent accidental * unsynchronized access to the map:<pre> * Map m = Collections.synchronizedMap(new LinkedHashMap(...));</pre> * * A structural modification is any operation that adds or deletes one or more * mappings or, in the case of access-ordered linked hash maps, affects * iteration order. In insertion-ordered linked hash maps, merely changing * the value associated with a key that is already contained in the map is not * a structural modification. <strong>In access-ordered linked hash maps, * merely querying the map with <tt>get</tt> is a structural modification. * </strong>) * * <p>The iterators returned by the <tt>iterator</tt> method of the collections * returned by all of this class's collection view methods are * <em>fail-fast</em>: if the map is structurally modified at any time after * the iterator is created, in any way except through the iterator's own * <tt>remove</tt> method, the iterator will throw a {@link * ConcurrentModificationException}. Thus, in the face of concurrent * modification, the iterator fails quickly and cleanly, rather than risking * arbitrary, non-deterministic behavior at an undetermined time in the future. * * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators * throw <tt>ConcurrentModificationException</tt> on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: <i>the fail-fast behavior of iterators * should be used only to detect bugs.</i> * * <p>The spliterators returned by the spliterator method of the collections * returned by all of this class's collection view methods are * <em><a href="Spliterator.html#binding">late-binding</a></em>, * <em>fail-fast</em>, and additionally report {@link Spliterator#ORDERED}. * * <p>This class is a member of the * <a href="{@docRoot}/../technotes/guides/collections/index.html"> * Java Collections Framework</a>. * * @implNote * The spliterators returned by the spliterator method of the collections * returned by all of this class's collection view methods are created from * the iterators of the corresponding collections. * * @param <K> the type of keys maintained by this map * @param <V> the type of mapped values * * @author Josh Bloch * @see Object#hashCode() * @see Collection * @see Map * @see HashMap * @see TreeMap * @see Hashtable * @since 1.4 */
二、LinkedHashMap 的内部实现:一些扩展属性和构造函数
LinkedHashMap 继承了 HashMap,这里重点说下 LinkedHashMap 在内部属性和构造函数方面扩展的部分。
1、扩展的属性和内部类
可以初步看出内部的一些变化,比如增加了首节点和尾节点的记录,内部节点元素增加了 before 和 after 节点。这些都是维持双链表需要用到的。另外就是 accessOrder ,用于指定是否按照 访问顺序(设置为 true) 排序(默认 false 是插入顺序)。
/** * HashMap.Node subclass for normal LinkedHashMap entries. * LinkedHashMap 的内部节点实现类,这里增加了 before 和 after 节点,用于维护 doubly-linked list * 这里继承了 HashMap.Node ,保证新节点的类型一致,都是 HashMap.Node */ static class Entry<K,V> extends HashMap.Node<K,V> { Entry<K,V> before, after; Entry(int hash, K key, V value, Node<K,V> next) { super(hash, key, value, next); } } /** * The head (eldest) of the doubly linked list. * 首节点元素(最早插入/最近最早访问过的) */ transient LinkedHashMap.Entry<K,V> head; /** * The tail (youngest) of the doubly linked list. * 尾节点元素(最晚插入/最近访问的) */ transient LinkedHashMap.Entry<K,V> tail; /** * The iteration ordering method for this linked hash map: <tt>true</tt> * for access-order, <tt>false</tt> for insertion-order. * 迭代器的顺序控制 * true:根据访问顺序 * false:默认场景,根据插入顺序 * @serial */ final boolean accessOrder;
2、构造函数
和 HashMap 构造函数的差别主要是 accessOrder 的设置。
/** * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance * with the specified initial capacity and load factor. * * 指定 初始容量 和 负载因子 ,同时默认为 插入顺序 * @param initialCapacity the initial capacity * @param loadFactor the load factor * @throws IllegalArgumentException if the initial capacity is negative * or the load factor is nonpositive */ public LinkedHashMap(int initialCapacity, float loadFactor) { super(initialCapacity, loadFactor); accessOrder = false; } /** * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance * with the specified initial capacity and a default load factor (0.75). * * 指定 初始容量 ,默认负载因子 0.75,同时默认为 插入顺序 * @param initialCapacity the initial capacity * @throws IllegalArgumentException if the initial capacity is negative */ public LinkedHashMap(int initialCapacity) { super(initialCapacity); accessOrder = false; } /** * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance * with the default initial capacity (16) and load factor (0.75). * * 空构造函数,默认初始容量 16,默认负载因子 0.75,同时默认为 插入顺序 */ public LinkedHashMap() { super(); accessOrder = false; } /** * Constructs an insertion-ordered <tt>LinkedHashMap</tt> instance with * the same mappings as the specified map. The <tt>LinkedHashMap</tt> * instance is created with a default load factor (0.75) and an initial * capacity sufficient to hold the mappings in the specified map. * * 通过指定 Map 构造默认为 插入顺序 的 LinkedHashMap * @param m the map whose mappings are to be placed in this map * @throws NullPointerException if the specified map is null */ public LinkedHashMap(Map<? extends K, ? extends V> m) { super(); accessOrder = false; putMapEntries(m, false); } /** * Constructs an empty <tt>LinkedHashMap</tt> instance with the * specified initial capacity, load factor and ordering mode. * * 指定 初始容量、负载因子、排序模式 * @param initialCapacity the initial capacity * @param loadFactor the load factor * @param accessOrder the ordering mode - <tt>true</tt> for * access-order, <tt>false</tt> for insertion-order * @throws IllegalArgumentException if the initial capacity is negative * or the load factor is nonpositive */ public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) { super(initialCapacity, loadFactor); this.accessOrder = accessOrder; }
三、LinkedHashMap 的 put 操作和扩容
put 操作直接继承自 HashMap,由于 LinkedHashMap 会涉及到双向链表的处理,这里有几个 注意点/改动点 需要说明下:
1、重写新节点创建函数 Node<K,V> newNode(int hash, K key, V value, Node<K,V> e),维护双链表
LinkedHashMap 的节点会有双向链表,因此在这里进行了处理,很明显,新节点即使最后访问也是最新插入的,直接就丢到最后去没毛病,因此链接到了链表最后/最新处。
// 创建新节点 并将 新节点 链接 到最后 Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) { LinkedHashMap.Entry<K,V> p = new LinkedHashMap.Entry<K,V>(hash, key, value, e); linkNodeLast(p); // 将 新节点 链接 到最后 return p; } // link at the end of list // 将 新节点 链接 到最后 private void linkNodeLast(LinkedHashMap.Entry<K,V> p) { LinkedHashMap.Entry<K,V> last = tail; tail = p; if (last == null) head = p; else { p.before = last; last.after = p; } }
2、HashMap 中留下来的三个回调函数, LinkedHashMap 都进行了重写
put 操作中有使用到的是 afterNodeAccess(Node<K,V> p) 和 afterNodeInsertion(boolean evict)。
- afterNodeAccess(Node<K,V> p) :k 存在的时候进行的操作。如果是根据访问控制顺序,需要将访问到的节点的链接到最后去;
- afterNodeInsertion(boolean evict) :k 不存在的时候进行的操作。 LRU cache 中可以进行实际的移除节点操作
// Callbacks to allow LinkedHashMap post-actions void afterNodeAccess(Node<K,V> p) { } // 访问节点后需要进行的操作,如果指定了根据访问顺序控制,则在这里将节点挪到最后 void afterNodeInsertion(boolean evict) { } // 插入节点后需要进行的操作,比如 LRU cache 中移除最早的节点 void afterNodeRemoval(Node<K,V> p) { } // 移除指定节点
在 LinkedHashMap 中的实现如下:
// 移除 e 节点元素后的操作,对于 HashMap ,removeNode 函数已经是移除了节点,这里是 LinkedHashMap 处理节点中和双向链表有关的的 before 和 after void afterNodeRemoval(Node<K,V> e) { // unlink LinkedHashMap.Entry<K,V> p = (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after; // 移除 e 节点本身的链接 p.before = p.after = null; if (b == null) // 重置 e 节点上一个节点的 after 链接 head = a; else b.after = a; if (a == null) // 重置 e 节点下一个节点的 before 链接 tail = b; else a.before = b; } // 是否移除最早插入/访问的节点元素 void afterNodeInsertion(boolean evict) { // possibly remove eldest LinkedHashMap.Entry<K,V> first; // 最简单的 LRU cache 其实就是重写 removeEldestEntry 什么时候返回 true 的逻辑(比如超过容量限制),然后移除最早插入/访问的节点 if (evict && (first = head) != null && removeEldestEntry(first)) { K key = first.key; removeNode(hash(key), key, null, false, true); } } // 节点访问后是否将节点挪到最后 void afterNodeAccess(Node<K,V> e) { // move node to last LinkedHashMap.Entry<K,V> last; if (accessOrder && (last = tail) != e) { LinkedHashMap.Entry<K,V> p = (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after; p.after = null; if (b == null) // 重置 e 节点上一个节点的 after 链接 head = a; else b.after = a; if (a != null) // 重置 e 节点下一个节点的 before 链接 a.before = b; else last = b; if (last == null) // 只有一个 e 节点的场景 head = p; else { p.before = last; // 把 e 节点挪到最后 last.after = p; } tail = p; // 尾节点处理 ++modCount; } }
这里再看看 removeEldestEntry(Map.Entry<K,V> eldest),这个方法是实现 LRU cache 的关键所在,文档注释中其实已经写明了简要应用,也就是检查 Map 的实际大小是否 大于 规定的容量,超过就是返回true,需要进行节点移除,保证集合不超过规定的上限。
/** * Returns <tt>true</tt> if this map should remove its eldest entry. * This method is invoked by <tt>put</tt> and <tt>putAll</tt> after * inserting a new entry into the map. It provides the implementor * with the opportunity to remove the eldest entry each time a new one * is added. This is useful if the map represents a cache: it allows * the map to reduce memory consumption by deleting stale entries. * * <p>Sample use: this override will allow the map to grow up to 100 * entries and then delete the eldest entry each time a new entry is * added, maintaining a steady state of 100 entries. * <pre> * private static final int MAX_ENTRIES = 100; * * protected boolean removeEldestEntry(Map.Entry eldest) { * return size() > MAX_ENTRIES; * } * </pre> * * <p>This method typically does not modify the map in any way, * instead allowing the map to modify itself as directed by its * return value. It <i>is</i> permitted for this method to modify * the map directly, but if it does so, it <i>must</i> return * <tt>false</tt> (indicating that the map should not attempt any * further modification). The effects of returning <tt>true</tt> * after modifying the map from within this method are unspecified. * * <p>This implementation merely returns <tt>false</tt> (so that this * map acts like a normal map - the eldest element is never removed). * * @param eldest The least recently inserted entry in the map, or if * this is an access-ordered map, the least recently accessed * entry. This is the entry that will be removed it this * method returns <tt>true</tt>. If the map was empty prior * to the <tt>put</tt> or <tt>putAll</tt> invocation resulting * in this invocation, this will be the entry that was just * inserted; in other words, if the map contains a single * entry, the eldest entry is also the newest. * @return <tt>true</tt> if the eldest entry should be removed * from the map; <tt>false</tt> if it should be retained. */ protected boolean removeEldestEntry(Map.Entry<K,V> eldest) { return false; }
3、还有一个比较骚的操作就是 HashMap 内部 红黑树节点 TreeNode 是直接继承 LinkedHashMap.Entry,因此这方面的 红黑树转化、扩容等等基本上可以说是无缝对接。
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {...}
红黑树转化和扩容其实只是涉及到内部节点的挪动,双向链表是不用改动的,因此不需要进行操作。
四、LinkedHashMap 的 get 操作
增加了 afterNodeAccess(Node<K,V> p) 的调用,对于访问顺序控制 LinkedHashMap,需要将访问的节点挪到最后去。其他的和 HashMap 一样。
/** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * * <p>More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code (key==null ? k==null : * key.equals(k))}, then this method returns {@code v}; otherwise * it returns {@code null}. (There can be at most one such mapping.) * * <p>A return value of {@code null} does not <i>necessarily</i> * indicate that the map contains no mapping for the key; it's also * possible that the map explicitly maps the key to {@code null}. * The {@link #containsKey containsKey} operation may be used to * distinguish these two cases. */ public V get(Object key) { Node<K,V> e; if ((e = getNode(hash(key), key)) == null) return null; if (accessOrder) afterNodeAccess(e); // 增加访问节点后需要进行的操作,如果指定了根据访问顺序控制,则在这里将节点挪到最后 return e.value; }
五、LinkedHashMap 的 remove 操作
节点的移除使用的是 HashMap 的 remove(Object key) ,移除其实是一样的,只是 LinkedHashMap 在最后需要处理双链表,这里使用的是扩展了 afterNodeRemoval(Node<K,V> p) 来进行处理。这个方法在 LinkedHashMap 的实现可以翻看本文前面的介绍。