自己随便记的,可读性较差。
Lecture2:Image Classification pipeline
def classify_image(image):
# some magic here?
return class_label
Data-Driven Approach
- Collect a dataset of images and labels
- Use Machine Learning to train a classifier
- Evaluate the classifier on new images
Example Dataset:CIFAR10
10 classes
50 000 training images
10 000 testing images
Distance Metric to compare images
L1 distance:曼哈顿
K-Nearest Neighbors
Instead of copying label from nearest neighbor, take majority vote from K closest points.
Distance Metric
L1(Manhattan)distance曼哈顿距离 L2(Euclidean)distance欧式距离
Hyperparameters
What is the best value of k to use?
What is the best distance to use?
These are hyperparameters: choices about the algorithm that we set rather than learn.
作业一:knn
参考:https://blog.csdn.net/qq_28448117/article/details/79399959
https://www.cnblogs.com/danscarlett/p/9402469.html
遇到的问题:Python中Import Error: no module named 'past'错误以及解决方法
解决办法:https://blog.csdn.net/qq_31282773/article/details/78672584