• [数学] 方差和标准差


    均值:

    [mu = frac{1}{m}sum^m_{i=0}{x_i} ]

    方差的定义:

    [sigma^2=frac{1}{m}sum (x_i-mu)^2 ]

    标准差:

    [std = sqrt{sigma^2} ]

    |第一组|身高cm|(|x-mu|)|((x-mu)^2)|第二组|身高cm|(|x-mu|)|((x-mu)^2)|
    |--|--|--|--|--|--|--|--|
    |A1|188|10|100|A2|166|12|144|
    |B1|169|9|81|B2|175|3|9|
    |C1|173|5|25|C2|176|2|4|
    |D1|175|3|9|D2|178|0|0|
    |E1|185|7|49|E2|182|4|16|
    |F1|178|0|0|F2|191|13|169|
    ||(sum=1068)|(sum=34)|(sum=264)||(sum=1068)|(sum=34)|(sum=342)|
    ||均值(mu=1068/8=178)||方差(sigma=264/6=44)||均值(mu=1068/6=178)||方差(sigma=342/6=57)|
    ||||标准差(std=sqrt{44}=6.63)||||标准差(std=sqrt{57}=7.55)|

    从上面的两组数字可以看到:

    1. 两组的身高总和一样:1068cm
    2. 两组的平均值一样:178cm
    3. 两组的差的绝对值的和一样:34
    4. 第一组的身高比较接近,因此方差为44
    5. 第二组的身高相差悬殊,因此方差为57

    平方计算可以放大远离平均值的异常值。

    数学期望

    1.数学期望的定义

    在概率论和统计学中,数学期望(或均值)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
    随机变量包括离散型和连续型,数学期望的计算也分离散型和连续型。

    (1)离散型

    如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。

    (2)连续型

    若随机变量X的分布函数F(x)可表示成一个非负可积函数f(x)的积分,则称X为连续型随机变量,f(x)称为X的概率密度函数(分布密度函数)。

    1. 计算公式

    设离散型随机变量X的分布律 (P(X=x_k)=p_k, k=1,2,...), (x_k)为第k个值,(p_k)为第k个值出现的概率。

    [E(X) = sum_{k=1}^N(x_k cdot p_k) ]

    1. 例子

    52张扑克牌,其中有4张A,抽中A得10元,否则输1元。求赢钱的数学期望。

    抽中A的概率 (P(isA) = 4/52= frac{1}{13})

    没抽中A的概率 (P(isNotA) = (52-4)/52= frac{12}{13})

    赢钱期望E = (frac{1}{13} * 10 + frac{12}{13} * (-1) = frac{-2}{13})

    即 赢钱期望E小于0。

    均值mean,统计学概念,是在你有一定量的数据后,加权平均后计算出的数值。
    期望E(Expected),概率论概念,是在你对随机变量的概率进行估计后,求出的预期数值。

    均值有权重,期望有概率,在日常生活中,很多时候我们可以粗略地把他们看成同一个概念。
    举个例子:你要统计你们班男生的身高,假设你们班有10个男生,以下是你收集到的数据:
    170,172,175,176,172,176,176,175,172,176

    那么,均值=(170+172+175+176+172+176+176+175+172+176)/10=174cm

    同时,我们可以看到,170出现了1次,175出现了2次,172出现了3次,176出现了4次,
    加权平均值:170x(1/10)+175x(2/10)+172x(3/10)+176x(4/10)=174
    可以看到,均值和加权平均值的计算结果一致,因为均值计算是加权均值计算的一种特殊形式
    期望=170X(1/10)+175X(2/10)+172X(3/10)+176X(4/10)=174cm

    方差(var = (170-174)^2*0.1 + (175-174)^2*0.2 + (172-174)^2*0.3 + (176-174)^2)*0.4 = 4.6)

    标准差 $std = sqrt{var} = sqrt{4.6} = 2.14 cm

    注意方差没有单位,标准差有单位。

  • 相关阅读:
    Codeforces Round #246 (Div. 2):B. Football Kit
    iOS8使用TouchID
    HDU 1796 How many integers can you find(容斥原理+二进制/DFS)
    MapReduce的Reduce side Join
    Android入门级编译错误汇总
    当往事已随风
    静态链表的C++实现
    《跨界杂谈》企业商业模式(三):集约
    C
    Android插屏动画效果
  • 原文地址:https://www.cnblogs.com/woodyh5/p/12005139.html
Copyright © 2020-2023  润新知