• Strassen矩阵算法分析及其C++实现 递归分治法(转)


    对于矩阵乘法 C = A × B,通常的做法是将矩阵进行分块相乘,如下图所示:


    从上图可以看出这种分块相乘总共用了8次乘法,当然对于子矩阵相乘(如A0×B0),还可以继续递归使用分块相乘。对于中小矩阵来说,很适合使用这种分块乘法,但是对于大矩阵来说,递归的次数较多,如果能减少每次分块乘法的次数,那么性能将可以得到很好的提高。

    Strassen矩阵乘法就是采用了一个简单的运算技巧,将上面的8次矩阵相乘变成了7次乘法,看别小看这减少的1次乘法,因为每递归1次,性能就提高了1/8,比如对于1024*1024的矩阵,第1次先分解成7512*512的矩阵相乘,对于512*512的矩阵,又可以继续递归分解成256*256的矩阵相乘,,一直递归下去,假设分解到64*64的矩阵大小后就不再递归,那么所花的时间将是分块矩阵乘法的(7/8) * (7/8) * (7/8) * (7/8) = 0.586倍,提高了快接近一倍。当然这是理论上的值,因为实际上strassen乘法增加了其他运算开销,实际性能会略低一点。

    由上可见,Strassen矩阵乘法是通过递归实现的,它将一般情况下二阶矩阵乘法(可扩展到n阶,但Strassen矩阵乘法要求n是2的幂)所需的8次乘法降低为7次,其C++实现代码如下:

    下面就是Strassen矩阵乘法的实现方法,

        M1 = (A0 + A3) × (B0 + B3)

       M2 = (A2 + A3) × B0

        M3 = A0 × (B1 - B3)

        M4 = A3 × (B2 - B0)

        M5 = (A0 + A1) × B3

        M6 = (A2 - A0) × (B0 + B1)

        M7 = (A1 - A3) × (B2 + B3)

        C0 = M1 + M4 - M5 + M7

        C1 = M3 + M5

        C2 = M2 + M4

        C3 = M1 - M2 + M3 + M6

    在求解M1,M2,M3,M4,M5,M6,M7时需要使用7次矩阵乘法,其他都是矩阵加法和减法。

    下面看看Strassen矩阵乘法的串行实现伪代码:

    Serial_StrassenMultiply(A, B, C)

    {

        T1 = A0 + A3;

        T2 = B0 + B3;

        StrassenMultiply(T1, T2, M1);

        T1 = A2 + A3;

        StrassenMultiply(T1, B0, M2);

        T1 = (B1 - B3);

        StrassenMultiply (A0, T1, M3);

        T1 = B2 - B0;

        StrassenMultiply(A3, T1, M4);

       T1 = A0 + A1;

       StrassenMultiply(T1, B3, M5);       

       

        T1 = A2 – A0;

        T2 = B0 + B1;

        StrassenMultiply(T1, T2, M6);

        T1 = A1 – A3;

        T2 = B2 + B3;

        StrassenMultiply(T1, T2, M7);

        C0 = M1 + M4 - M5 + M7

        C1 = M3 + M5

        C2 = M2 + M4

        C3 = M1 - M2 + M3 + M6

    }

     

    #include <iostream>  

    using namespace std;

    const int N = 6; //Define the size of the Matrix

    template<typename T>
    void Strassen(int n, T A[][N], T B[][N], T C[][N]);

    template<typename T>
    void input(int n, T p[][N]);

    template<typename T>
    void output(int n, T C[][N]);

    int main() {
    //Define three Matrices
    int A[N][N],B[N][N],C[N][N];

    //对A和B矩阵赋值,随便赋值都可以,测试用
    for(int i=0; i<N; i++) {
    for(int j=0; j<N; j++) {
    A[i][j] = i * j;
    B[i][j] = i * j;
    }
    }

    //调用Strassen方法实现C=A*B
    Strassen(N, A, B, C);

    //输出矩阵C中值
    output(N, C);

    system("pause");
    return 0;
    }


    template<typename T>
    void input(int n, T p[][N]) {
    for(int i=0; i<n; i++) {
    cout<<"Please Input Line "<<i+1<<endl;
    for(int j=0; j<n; j++) {
    cin>>p[i][j];
    }
    }
    }


    template<typename T>
    void output(int n, T C[][N]) {
    cout<<"The Output Matrix is :"<<endl;
    for(int i=0; i<n; i++) {
    for(int j=0; j<n; j++) {
    cout<<C[i][j]<<""<<endl;
    }
    }
    }


    template<typename T>
    void Matrix_Multiply(T A[][N], T B[][N], T C[][N]) { //Calculating A*B->C
    for(int i=0; i<2; i++) {
    for(int j=0; j<2; j++) {
    C[i][j] = 0;
    for(int t=0; t<2; t++) {
    C[i][j] = C[i][j] + A[i][t]*B[t][j];
    }
    }
    }
    }


    template <typename T>
    void Matrix_Add(int n, T X[][N], T Y[][N], T Z[][N]) {
    for(int i=0; i<n; i++) {
    for(int j=0; j<n; j++) {
    Z[i][j] = X[i][j] + Y[i][j];
    }
    }
    }


    template <typename T>
    void Matrix_Sub(int n, T X[][N], T Y[][N], T Z[][N]) {
    for(int i=0; i<n; i++) {
    for(int j=0; j<n; j++) {
    Z[i][j] = X[i][j] - Y[i][j];
    }
    }
    }



    template <typename T>
    void Strassen(int n, T A[][N], T B[][N], T C[][N]) {
    T A11[N][N], A12[N][N], A21[N][N], A22[N][N];
    T B11[N][N], B12[N][N], B21[N][N], B22[N][N];
    T C11[N][N], C12[N][N], C21[N][N], C22[N][N];
    T M1[N][N], M2[N][N], M3[N][N], M4[N][N], M5[N][N], M6[N][N], M7[N][N];
    T AA[N][N], BB[N][N];

    if(n == 2) { //2-order
    Matrix_Multiply(A, B, C);
    } else {
    //将矩阵A和B分成阶数相同的四个子矩阵,即分治思想。
    for(int i=0; i<n/2; i++) {
    for(int j=0; j<n/2; j++) {
    A11[i][j] = A[i][j];
    A12[i][j] = A[i][j+n/2];
    A21[i][j] = A[i+n/2][j];
    A22[i][j] = A[i+n/2][j+n/2];

    B11[i][j] = B[i][j];
    B12[i][j] = B[i][j+n/2];
    B21[i][j] = B[i+n/2][j];
    B22[i][j] = B[i+n/2][j+n/2];
    }
    }

    //Calculate M1 = (A0 + A3) × (B0 + B3)
    Matrix_Add(n/2, A11, A22, AA);
    Matrix_Add(n/2, B11, B22, BB);
    Strassen(n/2, AA, BB, M1);

    //Calculate M2 = (A2 + A3) × B0
    Matrix_Add(n/2, A21, A22, AA);
    Strassen(n/2, AA, B11, M2);

    //Calculate M3 = A0 × (B1 - B3)
    Matrix_Sub(n/2, B12, B22, BB);
    Strassen(n/2, A11, BB, M3);

    //Calculate M4 = A3 × (B2 - B0)
    Matrix_Sub(n/2, B21, B11, BB);
    Strassen(n/2, A22, BB, M4);

    //Calculate M5 = (A0 + A1) × B3
    Matrix_Add(n/2, A11, A12, AA);
    Strassen(n/2, AA, B22, M5);

    //Calculate M6 = (A2 - A0) × (B0 + B1)
    Matrix_Sub(n/2, A21, A11, AA);
    Matrix_Add(n/2, B11, B12, BB);
    Strassen(n/2, AA, BB, M6);

    //Calculate M7 = (A1 - A3) × (B2 + B3)
    Matrix_Sub(n/2, A12, A22, AA);
    Matrix_Add(n/2, B21, B22, BB);
    Strassen(n/2, AA, BB, M7);

    //Calculate C0 = M1 + M4 - M5 + M7
    Matrix_Add(n/2, M1, M4, AA);
    Matrix_Sub(n/2, M7, M5, BB);
    Matrix_Add(n/2, AA, BB, C11);

    //Calculate C1 = M3 + M5
    Matrix_Add(n/2, M3, M5, C12);

    //Calculate C2 = M2 + M4
    Matrix_Add(n/2, M2, M4, C21);

    //Calculate C3 = M1 - M2 + M3 + M6
    Matrix_Sub(n/2, M1, M2, AA);
    Matrix_Add(n/2, M3, M6, BB);
    Matrix_Add(n/2, AA, BB, C22);

    //Set the result to C[][N]
    for(int i=0; i<n/2; i++) {
    for(int j=0; j<n/2; j++) {
    C[i][j] = C11[i][j];
    C[i][j+n/2] = C12[i][j];
    C[i+n/2][j] = C21[i][j];
    C[i+n/2][j+n/2] = C22[i][j];
    }
    }
    }
    }





    //原文请看http://riddickbryant.javaeye.com/blog/546463


  • 相关阅读:
    存储引擎的优缺点及增删改查基本操作
    安装Mariadb
    Mysql 入门概念
    Nginx语法着色
    find用法,文件压缩和lsof和cpio
    软件包管理
    Django 生成六位随机图片验证码
    Django自定义过滤器和自定义标签
    Django零碎知识点
    jQuery实现淡入淡出样式轮播
  • 原文地址:https://www.cnblogs.com/wonderKK/p/2240262.html
Copyright © 2020-2023  润新知