• Okhttp3源码解析


     

    首先是Okhttp的使用:

    //缓存文件夹
    File cacheFile = new File(getExternalCacheDir().toString(), "cache");
    //缓存大小为10M
    int cacheSize = 10 * 1024 * 1024;
    //创建缓存对象
    Cache cache = new Cache(cacheFile, cacheSize);
    OkHttpClient client = new OkHttpClient
            .Builder()
            //.addInterceptor(new LoggingInterceptor())//日志拦截器
    .cache(cache)
            .build();
    Request request = new Request.Builder()
            .url("http://www.baidu.com")
            .build();
    client.newCall(request).enqueue(new Callback() {
        @Override
    public void onFailure(Call call, IOException e) {
            Log.d("OkHttp", "Call Failed:" + e.getMessage());
    }
    
        @Override
    public void onResponse(Call call, Response response) throws IOException {
            Log.d("OkHttp", "Call succeeded:" + response.message());
    }
    });

    先来看一下Request包含的有通讯的信息

    url:发起通讯的地址

    method:通讯方式

    public final class Request {
      final HttpUrl url;
      final String method;
      final Headers headers;
      final RequestBody body;
      final Object tag;
    
      private volatile CacheControl cacheControl; // Lazily initialized.
    
    Request(Builder builder) {
        this.url = builder.url;
        this.method = builder.method;
        this.headers = builder.headers.build();
        this.body = builder.body;
        this.tag = builder.tag != null ? builder.tag : this;
    }

     总流程图:

     Part1:主体流程

    下面我们先来摸清这个框架的主干部分,刚开始看的时候,先沿一条线下来,细枝末节先不要太关心:

    我们来看看newCall:

    client.newCall(request).enqueue(new Callback() {
    
    @Override public Call newCall(Request request) {
      return new RealCall(this, request, false /* for web socket */);
    }
    
    final class RealCall implements Call {
    
     
    
    RealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
      final EventListener.Factory eventListenerFactory = client.eventListenerFactory();
    
      this.client = client;
      this.originalRequest = originalRequest;
      this.forWebSocket = forWebSocket;
      this.retryAndFollowUpInterceptor = new RetryAndFollowUpInterceptor(client, forWebSocket);
    
    // TODO(jwilson): this is unsafe publication and not threadsafe.
    this.eventListener = eventListenerFactory.create(this);
    }

    可以看出:Call是一个接口,而RealCall是Call的一个具体实现。client.newCall(request)里面是生成一个RealCall的实例

    Recall同时持有client和request,

    所以:

    client.newCall(request).enqueue(new Callback() {

     实际上执行到的是RealCall的enqueue:

    @Override public void enqueue(Callback responseCallback) {
      synchronized (this) {
        if (executed) throw new IllegalStateException("Already Executed");
    executed = true;
    }
      captureCallStackTrace();
    client.dispatcher().enqueue(new AsyncCall(responseCallback));
    }

     这里的responseCallback就是我们最外层的回调接口,暂时先不管这个。

     重点看这行代码:

    
    
    client.dispatcher().enqueue(new AsyncCall(responseCallback));
     

     dispatcher是client持有的一个调度器,我们找到Dispatcher这个类里面的enqueue方法:

    synchronized void enqueue(AsyncCall call) {
      if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
        runningAsyncCalls.add(call);
    executorService().execute(call);
    } else {
        readyAsyncCalls.add(call);
    }
    }

    可以看出,runningAsyncCalls,这里是线程池里面的概念,先看executorService().execute(call)

    来看一下call:

    final class AsyncCall extends NamedRunnable {
    
    public abstract class NamedRunnable implements Runnable {

     可以看出,AsyncCall是一个Runnable,所以executorService().execute(call)执行的时候,实际上执行的是AsnycCall里面的execute()方法:

    @Override protected void execute() {
      boolean signalledCallback = false;
      try {
        Response response = getResponseWithInterceptorChain();
        if (retryAndFollowUpInterceptor.isCanceled()) {
          signalledCallback = true;
    responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
    } else {
          signalledCallback = true;
    responseCallback.onResponse(RealCall.this, response);
    }
      } catch (IOException e) {
        if (signalledCallback) {
          // Do not signal the callback twice!
    Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);
    } else {
          responseCallback.onFailure(RealCall.this, e);
    }
      } finally {
        client.dispatcher().finished(this);
    }
    }

      Response response = getResponseWithInterceptorChain()通过后续的层层调用,得到返回值,这句代码后续进行详细解析。

    然后调用responseCallback.onResponse(RealCall.this, response);通过callback返回最终结果给上层。

    以上部分总结:

    client.newCall(request).enqueue(new Callback() {

    执行流程: RealCall.enqueue(Callback)->client.dispatcher.enqueue(Callback)->通过Dispatcher的线程池执行AsyncCall.excute,Response response = getResponseWithInterceptorChain();

    最后通过responseCallback.onResponse返回最终的结果。

    Part2:

    接着往下分析:

     找到关键的语句:

    
    
    Response result = getResponseWithInterceptorChain();
     

     这句是这个框架比较核心的思想:拦截器,通过一个个的拦截器,通过递归串联起来:

    Response getResponseWithInterceptorChain() throws IOException {
      // Build a full stack of interceptors.
    List<Interceptor> interceptors = new ArrayList<>();
    interceptors.addAll(client.interceptors());
    interceptors.add(retryAndFollowUpInterceptor);
    interceptors.add(new BridgeInterceptor(client.cookieJar()));
    interceptors.add(new CacheInterceptor(client.internalCache()));
    interceptors.add(new ConnectInterceptor(client));
      if (!forWebSocket) {
        interceptors.addAll(client.networkInterceptors());
    }
      interceptors.add(new CallServerInterceptor(forWebSocket));
    
    Interceptor.Chain chain = new RealInterceptorChain(
          interceptors, null, null, null, 0, originalRequest);
      return chain.proceed(originalRequest);
    }

    首先是interceptors.addAll(client.interceptors()),这里面的intterceptors是哪里来的呢,从代码可以看出是由client来的,其实就是我们初始化client的时候,由用户

    添加的new OkHttpClient.Builder().addInterceptor(new LoggingInterceptor()).build();这里面的LoggingInterceptor就是我们用户自己定义的interceptor,从上面的代码

    我们可以看到interceptors是一个list,说明client的addInterceptor可以添加多个。

    我们看client的interceptors,是分为两种类型的, addInterceptor()和addNetworkInterceptor() 通过 addInterceptor() 方法添加的拦截器是放在最前面的。通过 addNetworkInterceptor() 方法添加的网络拦截器,则是在非 WebSocket 请求时,添加在 ConnectInterceptor 和 CallServerInterceptor 之间的。这两个的区别,可以看

    这里:https://blog.csdn.net/qq_38219041/article/details/72935142?utm_source=blogxgwz1

    addInterceptor() 添加应用拦截器
    ● 不需要担心中间过程的响应,如重定向和重试.
    ● 总是只调用一次,即使HTTP响应是从缓存中获取.
    ● 观察应用程序的初衷. 不关心OkHttp注入的头信息如: If-None-Match.
    ● 允许短路而不调用 Chain.proceed(),即中止调用.
    ● 允许重试,使 Chain.proceed()调用多次.
    addNetworkInterceptor() 添加网络拦截器
    ● 能够操作中间过程的响应,如重定向和重试.
    ● 当网络短路而返回缓存响应时不被调用.
    ● 只观察在网络上传输的数据.
    ● 携带请求来访问连接.

    接下来的重点是这句话:

    
    
    Interceptor.Chain chain = new RealInterceptorChain(
        interceptors, null, null, null, 0, originalRequest);
    return chain.proceed(originalRequest);

     interceptors的循环调用就在这里面了,那我们看一下这里面是如何实现的:

    public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
    RealConnection connection) throws IOException {
      if (index >= interceptors.size()) throw new AssertionError();
    
    calls++;
    
    // If we already have a stream, confirm that the incoming request will use it.
    if (this.httpCodec != null && !this.connection.supportsUrl(request.url())) {
        throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
            + " must retain the same host and port");
    }
    
      // If we already have a stream, confirm that this is the only call to chain.proceed().
    if (this.httpCodec != null && calls > 1) {
        throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
            + " must call proceed() exactly once");
    }
    
      // Call the next interceptor in the chain.
    RealInterceptorChain next = new RealInterceptorChain(
          interceptors, streamAllocation, httpCodec, connection, index + 1, request);
    Interceptor interceptor = interceptors.get(index);
    Response response = interceptor.intercept(next);
    
    // Confirm that the next interceptor made its required call to chain.proceed().
    if (httpCodec != null && index + 1 < interceptors.size() && next.calls != 1) {
        throw new IllegalStateException("network interceptor " + interceptor
            + " must call proceed() exactly once");
    }
    
      // Confirm that the intercepted response isn't null.
    if (response == null) {
        throw new NullPointerException("interceptor " + interceptor + " returned null");
    }
    
      return response;
    }

    可以看到,RealInterceptorChain的参数index第一次传进来的时候为0,来看porceed这个方法里面,重点是下面这句话:

    
    
    // Call the next interceptor in the chain.
    RealInterceptorChain next = new RealInterceptorChain(
        interceptors, streamAllocation, httpCodec, connection, index + 1, request);
    Interceptor interceptor = interceptors.get(index);
    Response response = interceptor.intercept(next);
     

    这里先new一个RealInterceptorChain,index为在原来的基础上+1,然后从前面的interceptors这个list里面,根据index取出相对应的一个interceptor,然后这个RealInterceptorChain作为一个参数传进interceptor.intercept

    这时候我们就要回过头去看一下,说了这么久的interceptor到底是什么:

    interceptors.add(new BridgeInterceptor(client.cookieJar()));
    
    public final class BridgeInterceptor implements Interceptor { 
    
    public interface Interceptor {
      Response intercept(Chain chain) throws IOException;
    
      interface Chain {
        Request request();
    
    Response proceed(Request request) throws IOException;
    
    Connection connection();
    }
    }

     interceptort定义一个接口,各个具体的拦截器实现这个接口,我们用户自己定义的拦截器也都是实现这个接口,

    前面提到的:

    
    
    Response response = interceptor.intercept(next);
     

     其实就是每个具体拦截器的方法intercept:

    @Override public Response intercept(Chain chain) throws IOException {
      Request userRequest = chain.request();
    Request.Builder requestBuilder = userRequest.newBuilder();
    
    RequestBody body = userRequest.body();
      if (body != null) {
        MediaType contentType = body.contentType();
        if (contentType != null) {
          requestBuilder.header("Content-Type", contentType.toString());
    }
    
        long contentLength = body.contentLength();
        if (contentLength != -1) {
          requestBuilder.header("Content-Length", Long.toString(contentLength));
    requestBuilder.removeHeader("Transfer-Encoding");
    } else {
          requestBuilder.header("Transfer-Encoding", "chunked");
    requestBuilder.removeHeader("Content-Length");
    }
      }
    
      if (userRequest.header("Host") == null) {
        requestBuilder.header("Host", hostHeader(userRequest.url(), false));
    }
    
      if (userRequest.header("Connection") == null) {
        requestBuilder.header("Connection", "Keep-Alive");
    }
    
      // If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing
      // the transfer stream.
    boolean transparentGzip = false;
      if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
        transparentGzip = true;
    requestBuilder.header("Accept-Encoding", "gzip");
    }
    
      List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url());
      if (!cookies.isEmpty()) {
        requestBuilder.header("Cookie", cookieHeader(cookies));
    }
    
      if (userRequest.header("User-Agent") == null) {
        requestBuilder.header("User-Agent", Version.userAgent());
    }
    
      Response networkResponse = chain.proceed(requestBuilder.build());
    
    HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());
    
    Response.Builder responseBuilder = networkResponse.newBuilder()
          .request(userRequest);
    
      if (transparentGzip
          && "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
          && HttpHeaders.hasBody(networkResponse)) {
        GzipSource responseBody = new GzipSource(networkResponse.body().source());
    Headers strippedHeaders = networkResponse.headers().newBuilder()
            .removeAll("Content-Encoding")
            .removeAll("Content-Length")
            .build();
    responseBuilder.headers(strippedHeaders);
    responseBuilder.body(new RealResponseBody(strippedHeaders, Okio.buffer(responseBody)));
    }
    
      return responseBuilder.build();
    }

    以上代码我们先追踪是如何实现循环调用interceptor,主要是以下这一句:

    
    
    Response networkResponse = chain.proceed(requestBuilder.build());
     

    看到这里,又调用了chain的proceed,而这个chain就是RealInterceptorChain,又回到了chain的proceed里面:

    
    
    // Call the next interceptor in the chain.
    RealInterceptorChain next = new RealInterceptorChain(
        interceptors, streamAllocation, httpCodec, connection, index + 1, request);
    Interceptor interceptor = interceptors.get(index);
    Response response = interceptor.intercept(next);

     通过index再次加1,调用下一个interceptor的intercept;所以拦截器list interceptors并不是通过for循环来获得每一个的拦截器,而是通过前面的index每次+1,然后

    通过chain来串连起来。

    由上可知,每个拦截器的重点位置就是看里面的intercept方法如何执行的,这里面都包括该拦截器的本身的业务处理以及调用下一个拦截器。

    流程图:(责任链模式)

     Part3:拦截器


    BridgeInterceptor:转换应用层request数据为真正的网络请求数据:


    先看一下BridgeInterceptor,拦截器我们都是从intercept方法入手:

    @Override public Response intercept(Chain chain) throws IOException {
        Request userRequest = chain.request(); 
        Request.Builder requestBuilder = userRequest.newBuilder();
    
        RequestBody body = userRequest.body();
        if (body != null) {
          MediaType contentType = body.contentType();
          if (contentType != null) {
            requestBuilder.header("Content-Type", contentType.toString());
          }
    
          long contentLength = body.contentLength();
          if (contentLength != -1) {
            requestBuilder.header("Content-Length", Long.toString(contentLength));
            requestBuilder.removeHeader("Transfer-Encoding");
          } else {
            requestBuilder.header("Transfer-Encoding", "chunked");
            requestBuilder.removeHeader("Content-Length");
          }
        }
    
        if (userRequest.header("Host") == null) {
          requestBuilder.header("Host", hostHeader(userRequest.url(), false));
        }
    
        if (userRequest.header("Connection") == null) {
          requestBuilder.header("Connection", "Keep-Alive");
        }
    
        // If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing
        // the transfer stream.
        boolean transparentGzip = false;
        if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
          transparentGzip = true;
          requestBuilder.header("Accept-Encoding", "gzip");
        }
    
        List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url());
        if (!cookies.isEmpty()) {
          requestBuilder.header("Cookie", cookieHeader(cookies));
        }
    
        if (userRequest.header("User-Agent") == null) {
          requestBuilder.header("User-Agent", Version.userAgent());
        }
    
        Response networkResponse = chain.proceed(requestBuilder.build());
    
        HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());
    
        Response.Builder responseBuilder = networkResponse.newBuilder()
            .request(userRequest);
    
        if (transparentGzip
            && "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
            && HttpHeaders.hasBody(networkResponse)) {
          GzipSource responseBody = new GzipSource(networkResponse.body().source());
          Headers strippedHeaders = networkResponse.headers().newBuilder()
              .removeAll("Content-Encoding")
              .removeAll("Content-Length")
              .build();
          responseBuilder.headers(strippedHeaders);
          responseBuilder.body(new RealResponseBody(strippedHeaders, Okio.buffer(responseBody)));
        }
    
        return responseBuilder.build();
      }

    以上代码中,前半部分,chain.proceed(requestBuilder.build())前面,其实就是将最外层的代码,即用户层面定义的request:

    Request request = new Request.Builder() .........

    里面的各个参数转为真正的网络请求参数,包括Host、Connect、Accept-Encoding、User-Agent、Cookie等http的头部分头信息,通过:

    Response networkResponse = chain.proceed(requestBuilder.build());

    将这些信息传入到下一个拦截器去执行,请求阶段这个拦截器的作用已经结束,接下来就是调用:

    
    
    Response.Builder responseBuilder = networkResponse.newBuilder()
        .request(userRequest);
    
    

    来等待下级拦截器的返回结果。所以拦截器的作用就是,我尽管完成我的那一部分工作,把我得到的请求交给下一个拦截器,中间的过程不用管,我就等待下一个拦截器返回结果,然后再将结果同样返回上一个拦截器。

    return responseBuilder.build();

    CacheInterceptor:缓存拦截器,从网络还是缓存获取数据:

     接下来看一下CacheInterceptor:

    @Override public Response intercept(Chain chain) throws IOException {
        Response cacheCandidate = cache != null
            ? cache.get(chain.request())
            : null;
    
        long now = System.currentTimeMillis();
    
        CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();
        Request networkRequest = strategy.networkRequest;
        Response cacheResponse = strategy.cacheResponse;
    
        if (cache != null) {
          cache.trackResponse(strategy);
        }
    
        if (cacheCandidate != null && cacheResponse == null) {
          closeQuietly(cacheCandidate.body()); // The cache candidate wasn't applicable. Close it.
        }
    
        // If we're forbidden from using the network and the cache is insufficient, fail.
        if (networkRequest == null && cacheResponse == null) {
          return new Response.Builder()
              .request(chain.request())
              .protocol(Protocol.HTTP_1_1)
              .code(504)
              .message("Unsatisfiable Request (only-if-cached)")
              .body(Util.EMPTY_RESPONSE)
              .sentRequestAtMillis(-1L)
              .receivedResponseAtMillis(System.currentTimeMillis())
              .build();
        }
    
        // If we don't need the network, we're done.
        if (networkRequest == null) {
          return cacheResponse.newBuilder()
              .cacheResponse(stripBody(cacheResponse))
              .build();
        }
    
        Response networkResponse = null;
        try {
          networkResponse = chain.proceed(networkRequest);
        } finally {
          // If we're crashing on I/O or otherwise, don't leak the cache body.
          if (networkResponse == null && cacheCandidate != null) {
            closeQuietly(cacheCandidate.body());
          }
        }
    
        // If we have a cache response too, then we're doing a conditional get.
        if (cacheResponse != null) {
          if (networkResponse.code() == HTTP_NOT_MODIFIED) {
            Response response = cacheResponse.newBuilder()
                .headers(combine(cacheResponse.headers(), networkResponse.headers()))
                .sentRequestAtMillis(networkResponse.sentRequestAtMillis())
                .receivedResponseAtMillis(networkResponse.receivedResponseAtMillis())
                .cacheResponse(stripBody(cacheResponse))
                .networkResponse(stripBody(networkResponse))
                .build();
            networkResponse.body().close();
    
            // Update the cache after combining headers but before stripping the
            // Content-Encoding header (as performed by initContentStream()).
            cache.trackConditionalCacheHit();
            cache.update(cacheResponse, response);
            return response;
          } else {
            closeQuietly(cacheResponse.body());
          }
        }
    
        Response response = networkResponse.newBuilder()
            .cacheResponse(stripBody(cacheResponse))
            .networkResponse(stripBody(networkResponse))
            .build();
    
        if (cache != null) {
          if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) {
            // Offer this request to the cache.
            CacheRequest cacheRequest = cache.put(response);
            return cacheWritingResponse(cacheRequest, response);
          }
    
          if (HttpMethod.invalidatesCache(networkRequest.method())) {
            try {
              cache.remove(networkRequest);
            } catch (IOException ignored) {
              // The cache cannot be written.
            }
          }
        }
    
        return response;
      }

    首先是这一句:

    Response cacheCandidate = cache != null
            ? cache.get(chain.request())
            : null;

    判断本地是否存在缓存,如果存在,直接用,如果不存在,则值为空继续往下,那这个cache又从哪里来呢,其实也是应用层定义的:

    //缓存文件夹
    File cacheFile = new File(getExternalCacheDir().toString(), "cache");
    //缓存大小为10M
    int cacheSize = 10 * 1024 * 1024;
    Cache cache = new Cache(cacheFile, cacheSize); OkHttpClient client = new OkHttpClient .Builder() //.addInterceptor(new LoggingInterceptor())//日志拦截器 .cache(cache)

    这里定义了一个file存储cache,定义了名字、存储路径以及最大缓存容量,那是在哪个地方设置值进去呢:

    
    
    // If we have a cache response too, then we're doing a conditional get.
    if (cacheResponse != null) {
    if (networkResponse.code() == HTTP_NOT_MODIFIED) {
    Response response = cacheResponse.newBuilder()
    .headers(combine(cacheResponse.headers(), networkResponse.headers()))
    .sentRequestAtMillis(networkResponse.sentRequestAtMillis())
    .receivedResponseAtMillis(networkResponse.receivedResponseAtMillis())
    .cacheResponse(stripBody(cacheResponse))
    .networkResponse(stripBody(networkResponse))
    .build();
    networkResponse.body().close();

    // Update the cache after combining headers but before stripping the
    // Content-Encoding header (as performed by initContentStream()).
    cache.trackConditionalCacheHit();
    cache.update(cacheResponse, response);
    return response;
    } else {
    closeQuietly(cacheResponse.body());
    }
    }
     

     我们先来看HTTP_NOT_MODIFIED看是什么意思:

    /**
         * HTTP Status-Code 304: Not Modified.
         */
        public static final int HTTP_NOT_MODIFIED = 304;

     返回这个意思就是,当客户端再次请求数据的时候,这个时间到上次请求的时间段内,服务器的资源数据没有更新,所以对于客户端来说,没必要再次去服务器获取具体数据,直接从本地获取上一次的数据,然后return response。

    如果说是网络资源已修改,或者是第一次请求,则使用下一层的网络请求返回response,然后将该response缓存在cache里面供下次的请求使用。

     
     
  • 相关阅读:
    项目开发管理SDEM
    google安装文件 和 缓存位置:
    数据库 查询超时 运行超时 问题
    将Access、Excel数据导出到MSSQL/使用 OpenRowSet 和 OpenDataSource 访问 Excel 97-2007
    Mybatis日志(七)
    Mybatis拦截器(六)
    Mybatis动态SQL(五)
    Mybatis的XML映射文件(四)
    Mybatis全局配置文件详解(三)
    Mybatis环境搭建(二)
  • 原文地址:https://www.cnblogs.com/wnpp/p/11663097.html
Copyright © 2020-2023  润新知