• OpenVSwitch实验参考


    1. 使用Floodlight管理OVS桥

      (1) 下载:https://codeload.github.com/floodlight/floodlight/tar.gz/v1.2
      (2) tar xf floodlight-1.2.tar.gz -C /tmp
        cd /tmp/floodlight-1.2
        make #只需要make下即可生成 floodlight.jar
        ./floodlight.sh #启动floodlight.

      (3)ovs-vsctl set-controller ovs-switch tcp:192.168.10.10:6653
       当 OVS 交换机连接到 Floodlight 控制器后,理论上所有的流表规则应该交给控制器来建立。由于 OVS 交换机和控制器之间是通过网络通讯来传递数据的,所以网络连接失败会影响到 Flow 的建立。针对这种情况,OVS 提供了两种处理模式:
      • standlone: 默认模式。如果 OVS 交换机超过三次无法正常连接到 OpenFlow 控制器,OVS 交换机自己会负责建立流表。在这种模式下,OVS 和常见的 L2 交换机相似。与此同时,OVS 也会继续尝试连接控制器,一旦网络连接恢复,OVS 会再次切换到使用控制器进行流表管理。
      • secure: 在 secure 模式下,如果 OVS 无法正常连接到 OpenFlow 控制器,OVS 会不停的尝试与控制器重新建立连接,而不会自己负责建立流表。

      (4) 设置 OVS 的连接模式为 secure 模式
        ovs-vsctl set Bridge ovs-switch fail-mode=secure

      (5) 查看 OVS 的状态,“is_connected:true”代表 OVS 已经成功连接到了 Floodlight
        ovs-vsctl show
         30282710-d401-4187-8e13-52388f693df7
          Bridge ovs-switch
            Controller "tcp:192.168.10.10:6653"
              is_connected: true

      (6) 连接Floodlight Web GUI
        http://192.168.10.10:8080/ui/index.html

      (7) Floodlight RESTServer的参考资料:
        FloodLight开发者文档(译文),共五页
        文档一: http://blog.csdn.net/sherkyoung/article/details/27826277



    2. OVS多路径 与 STP 实验.
      参考:openvswitch group(select) to multipatch:http://www.lofter.com/tag/OpenvSwitch

      拓扑结构
      每个OVS 交换机连线上的数字为:OVS OpenFlow Port编号.

        

        实验步骤:
        (1) 构建拓扑结构
          # 创建OVS交换机
          ovs-vsctl add-br s1
          ovs-vsctl add-br s21
          ovs-vsctl add-br s22
          ovs-vsctl add-br s23
          ovs-vsctl add-br s3

          # 创建Network Namesapce,来充当虚拟PC
          ip netns add c1    #ip netns若不支持,需升级iproute*.rpm.
          ip netns add c2
          ip netns add c3
          ip netns add h1
          ip netns add h2
          ip netns add h3

          # OVS交换机 S1 上的连线
          ovs-vsctl add-port s1 c1
          ovs-vsctl set interface c1 type=internal
          ip link set c1 netns c1
          ip netns exec c1 ifconfig c1 192.168.0.101/24 up

          ovs-vsctl add-port s1 c2
          ovs-vsctl set interface c2 type=internal
          ip link set c2 netns c2
          ip netns exec c2 ifconfig c2 192.168.0.102/24 up

          ovs-vsctl add-port s1 c3
          ovs-vsctl set interface c3 type=internal
          ip link set c3 netns c3
          ip netns exec c3 ifconfig c3 192.168.0.103/24 up

          # OVS交换机 S3 上的连线
          ovs-vsctl add-port s3 h1
          ovs-vsctl set interface h1 type=internal
          ip link set h1 netns h1
          ip netns exec h1 ifconfig h1 192.168.0.1/24 up

          ovs-vsctl add-port s3 h2
          ovs-vsctl set interface h2 type=internal
          ip link set h2 netns h2
          ip netns exec h2 ifconfig h2 192.168.0.2/24 up

          ovs-vsctl add-port s3 h3
          ovs-vsctl set interface h3 type=internal
          ip link set h3 netns h3
          ip netns exec h3 ifconfig h3 192.168.0.3/24 up

          # OVS交换机 S1 与 S21、S22、S23的连线
          ovs-vsctl add-port s1 s1-s21
          ovs-vsctl set interface s1-s21 type=patch options:peer=s21-s1
          ovs-vsctl add-port s21 s21-s1
          ovs-vsctl set interface s21-s1 type=patch options:peer=s1-s21

          ovs-vsctl add-port s1 s1-s22
          ovs-vsctl set interface s1-s22 type=patch options:peer=s22-s1
          ovs-vsctl add-port s22 s22-s1
          ovs-vsctl set interface s22-s1 type=patch options:peer=s1-s22

          ovs-vsctl add-port s1 s1-s23
          ovs-vsctl set interface s1-s23 type=patch options:peer=s23-s1
          ovs-vsctl add-port s23 s23-s1
          ovs-vsctl set interface s23-s1 type=patch options:peer=s1-s23

          # OVS交换机 S3 与 S21、S22、S23的连线
          ovs-vsctl add-port s3 s3-s21
          ovs-vsctl set interface s3-s21 type=patch options:peer=s21-s3
          ovs-vsctl add-port s21 s21-s3
          ovs-vsctl set interface s21-s3 type=patch options:peer=s3-s21

          ovs-vsctl add-port s3 s3-s22
          ovs-vsctl set interface s3-s22 type=patch options:peer=s22-s3
          ovs-vsctl add-port s22 s22-s3
          ovs-vsctl set interface s22-s3 type=patch options:peer=s3-s22

          ovs-vsctl add-port s3 s3-s23
          ovs-vsctl set interface s3-s23 type=patch options:peer=s23-s3
          ovs-vsctl add-port s23 s23-s3
          ovs-vsctl set interface s23-s3 type=patch options:peer=s3-s23

          #启动STP(生成树协议)
          ovs-vsctl set bridge s1 stp_enable=true
          ovs-vsctl set bridge s21 stp_enable=true
          ovs-vsctl set bridge s22 stp_enable=true
          ovs-vsctl set bridge s23 stp_enable=true
          ovs-vsctl set bridge s3 stp_enable=true

        # 启动STP后, 被block的接口
        ovs-vsctl list port |grep -E 'name|status'
          name : "s21-s1"
          status : {stp_port_id="8001", stp_role=root, stp_sec_in_state="8414", stp_state=forwarding}
          name : "s1-s21"
          status : {stp_port_id="8003", stp_role=designated, stp_sec_in_state="8414", stp_state=forwarding}
          name : "s3-s21"
          status : {stp_port_id="8002", stp_role=alternate, stp_sec_in_state="8442", stp_state=blocking}
          name : "s22-s1"
          status : {stp_port_id="8001", stp_role=root, stp_sec_in_state="8414", stp_state=forwarding}
    .      ...
          name : "s3-s22"
          status : {stp_port_id="8001", stp_role=root, stp_sec_in_state="8414", stp_state=forwarding}
          name : "s1-s23"
          status : {stp_port_id="8001", stp_role=designated, stp_sec_in_state="8414", stp_state=forwarding}
          name : "s3-s23"
          status : {stp_port_id="8003", stp_role=alternate, stp_sec_in_state="8442", stp_state=blocking}
          name : "s23-s3"
          status : {stp_port_id="8001", stp_role=designated, stp_sec_in_state="8414", stp_state=forwarding}
          name : "s1-s22"
          status : {stp_port_id="8002", stp_role=designated, stp_sec_in_state="8414", stp_state=forwarding}
          name : "s23-s1"
          status : {stp_port_id="8002", stp_role=root, stp_sec_in_state="8414", stp_state=forwarding}
          name : "s22-s3"
          status : {stp_port_id="8002", stp_role=designated, stp_sec_in_state="8414", stp_state=forwarding}
          name : "s21-s3"
          status : {stp_port_id="8002", stp_role=designated, stp_sec_in_state="8414", stp_state=forwarding}

      # 由于STP启动后,它会自动发现环路,并阻塞部分冗余链路防止环路.但这就妨碍了
      # 我们多路径的实现需求。
      # 关闭STP,添加OpenFLow规则,避免手动避免环路.
      # 禁止STP
        ovs-vsctl set bridge s1 stp_enable=false
        ovs-vsctl set bridge s21 stp_enable=false
        ovs-vsctl set bridge s22 stp_enable=false
        ovs-vsctl set bridge s23 stp_enable=false
        ovs-vsctl set bridge s3 stp_enable=false

      #S1上添加多路径规则
      # 修改OVS 交换机支持的OpenFlow版本为OpenFlow 1.3,默认支持OpenFlow 1.0
        ovs-vsctl set bridge s1 protocols=OpenFlow13
        ovs-vsctl set bridge s21 protocols=OpenFlow13
        ovs-vsctl set bridge s22 protocols=OpenFlow13
        ovs-vsctl set bridge s23 protocols=OpenFlow13
        ovs-vsctl set bridge s3 protocols=OpenFlow13

      # 在S1上添加实现多路径的组.
        ovs-ofctl -O OpenFlow13 add-group s1
          group_id=5566,type=select,bucket=output:4,bucket=output:5,bucket=output:6
      # 查看添加的组规则
        ovs-ofctl -O OpenFlow13 dump-groups s1
          OFPST_GROUP_DESC reply (OF1.3) (xid=0x2):
          group_id=5566,type=select,bucket=actions=output:4,bucket=actions=output:5,bucket=actions=output:6

      # 在S1上添加C1、C2、C3进入的流规则
      # (1) 把端口1~3进入的流量都定向导组ID为5566的多路径桶中,让其自动选择转发端口.
        ovs-ofctl -O OpenFlow13 add-flow s1 priority=10,in_port=1,actions=group:5566
        ovs-ofctl -O OpenFlow13 add-flow s1 priority=10,in_port=2,actions=group:5566
        ovs-ofctl -O OpenFlow13 add-flow s1 priority=10,in_port=3,actions=group:5566

      # (2) 添加进入C1~3的流规则
        ovs-ofctl -O OpenFlow13 add-flow s1 priority=1,ip,ip_dst=192.168.0.101,actions=output:1
        ovs-ofctl -O OpenFlow13 add-flow s1 priority=1,ip,ip_dst=192.168.0.102,actions=output:2
        ovs-ofctl -O OpenFlow13 add-flow s1 priority=1,ip,ip_dst=192.168.0.103,actions=output:3

        ovs-ofctl -O OpenFlow13 add-flow s1 priority=1,arp,ip_dst=192.168.0.101,actions=output:1
        ovs-ofctl -O OpenFlow13 add-flow s1 priority=1,arp,ip_dst=192.168.0.102,actions=output:2
        ovs-ofctl -O OpenFlow13 add-flow s1 priority=1,arp,ip_dst=192.168.0.103,actions=output:3
      # 注:
        # 添加priority是希望,流规则匹配时优先匹配协议地址,若是去往S1直连主机,则可直接转发.
        # 避免先走多路径导致网络不通 或 多走冤枉路。优先级的值是越小越优先。
      #疑问:
        # OpenFlow中有0~254张流表,ovs-ofctl命令中mod-table参数可修改流表的行为,其中man手册中
        #说OpenFlow1.0流表匹配是从0查到254,找到第一个匹配流表项终止,OpenFlow1.2以上,似乎不是这样,
        #我测试了将ip,arp的匹配项放到table 0中, 将多路径的匹配项放到table 1中,但发现table 1中没有任何
        #匹配项,而且C1 ping h1~3都不通. 接着我将所有表项都放到table 1中,结果全都不通了,而且流表项都
        #没有匹配. 我尝试 ovs-ofctl -O OpenFlow13 mod-table s1 1 continue,修改流表匹配行为,但没有
        #效果,因此想通过在不同流表中添加规则实现优先的方式,我没能实现. 还没需继续学习。

      # 在S21、S22、S23上添加防止环路的流规则
        ovs-ofctl -O OpenFlow13 add-flow s21 in_port=1,actions=output:2
        ovs-ofctl -O OpenFlow13 add-flow s21 in_port=2,actions=output:1
        ovs-ofctl -O OpenFlow13 add-flow s22 in_port=1,actions=output:2
        ovs-ofctl -O OpenFlow13 add-flow s22 in_port=2,actions=output:1
        ovs-ofctl -O OpenFlow13 add-flow s23 in_port=1,actions=output:2
        ovs-ofctl -O OpenFlow13 add-flow s23 in_port=2,actions=output:1

      # 在S3上添加流规则
        ovs-ofctl -O OpenFlow13 add-flow s3 ip,ip_dst=192.168.0.1,actions=output:1
        ovs-ofctl -O OpenFlow13 add-flow s3 ip,ip_dst=192.168.0.2,actions=output:2
        ovs-ofctl -O OpenFlow13 add-flow s3 ip,ip_dst=192.168.0.3,actions=output:3

        ovs-ofctl -O OpenFlow13 add-flow s3 arp,ip_dst=192.168.0.1,actions=output:1
        ovs-ofctl -O OpenFlow13 add-flow s3 arp,ip_dst=192.168.0.2,actions=output:2
        ovs-ofctl -O OpenFlow13 add-flow s3 arp,ip_dst=192.168.0.3,actions=output:3

        ovs-ofctl -O OpenFlow13 add-flow s3 ip,ip_dst=192.168.0.101,actions=output:4
        ovs-ofctl -O OpenFlow13 add-flow s3 ip,ip_dst=192.168.0.102,actions=output:5
        ovs-ofctl -O OpenFlow13 add-flow s3 ip,ip_dst=192.168.0.103,actions=output:6

        ovs-ofctl -O OpenFlow13 add-flow s3 arp,ip_dst=192.168.0.101,actions=output:4
        ovs-ofctl -O OpenFlow13 add-flow s3 arp,ip_dst=192.168.0.102,actions=output:5
        ovs-ofctl -O OpenFlow13 add-flow s3 arp,ip_dst=192.168.0.103,actions=output:6

      #查看流规则
        ovs-ofctl -O OpenFlow13 dump-flows s1

      #测试:
        # C1 ping C2
        [root@node2 ~]# ip netns exec c1 ping 192.168.0.102
          PING 192.168.0.102 (192.168.0.102) 56(84) bytes of data.
          64 bytes from 192.168.0.102: icmp_seq=1 ttl=64 time=1.47 ms

        # C1 ping h1
        [root@node2 ~]# ip netns exec c1 ping 192.168.0.1
          PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
          64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=6.32 ms

        # h1 ping C3
        [root@node2 ~]# ip netns exec h1 ping 192.168.0.103
          PING 192.168.0.103 (192.168.0.103) 56(84) bytes of data.
          64 bytes from 192.168.0.103: icmp_seq=1 ttl=64 time=4.02 ms

        # h1 ping h3
        [root@node2 ~]# ip netns exec h1 ping 192.168.0.3
          PING 192.168.0.3 (192.168.0.3) 56(84) bytes of data.
          64 bytes from 192.168.0.3: icmp_seq=1 ttl=64 time=2.50 ms

      # 查看流规则匹配情况,n_packets 可用来判断流规则匹配次数.
        [root@node2 ~]# ovs-ofctl -O OpenFlow13 dump-flows s1
          OFPST_FLOW reply (OF1.3) (xid=0x2):
          cookie=0x0, duration=12107.097s, table=0, n_packets=4, n_bytes=168, priority=1,arp,arp_tpa=192.168.0.103 actions=output:3
          cookie=0x0, duration=12152.967s, table=0, n_packets=4, n_bytes=392, priority=1,ip,nw_dst=192.168.0.101 actions=output:1
          cookie=0x0, duration=12121.400s, table=0, n_packets=2, n_bytes=84, priority=1,arp,arp_tpa=192.168.0.102 actions=output:2
          。。。。


    3. OVS的SPAN功能测试
      SPAN:Switched Port Analyzer(交换端口分析器),这是一种交换机端口镜像技术,目的是将某些端口进入和出去的流量都,复制一份到指定端口 做协议分析.
        注:端口监控分为两种:本地SPAN 和 远程SPAN(RSPAN),RSPAN:通常采用VLAN来实现将跨交换机的复制端口流量.

      拓扑:

        

        本地SPAN:
        ovs-vsctl add-br s1

      # OVS交换机 S1 上的连线
        ovs-vsctl add-port s1 c1
        ovs-vsctl set interface c1 type=internal
        ip link set c1 netns c1
        ip netns exec c1 ifconfig c1 10.0.0.1/24 up

        ovs-vsctl add-port s1 c2
        ovs-vsctl set interface c2 type=internal
        ip link set c2 netns c2
        ip netns exec c2 ifconfig c2 10.0.0.2/24 up

        ovs-vsctl add-port s1 c3
        ovs-vsctl set interface c3 type=internal -- set port c3 tag=20
        ip link set c3 netns c3
        ip netns exec c3 ifconfig c3 10.0.0.3/24 up

      # OVS交换机 S3 上的连线
        ovs-vsctl add-port s3 h1
        ovs-vsctl set interface h1 type=internal -- set port h1 tag=10
        ip link set h1 netns h1
        ip netns exec h1 ifconfig h1 192.168.0.1/24 up

        ovs-vsctl add-port s3 h2
        ovs-vsctl set interface h2 type=internal -- set port h2 tag=10
        ip link set h2 netns h2
        ip netns exec h2 ifconfig h2 192.168.0.2/24 up

      # 将C1、C2的流量镜像到C3端口.
        ovs-vsctl set bridge s1 mirrors=@mymirror1
          -- --id=@monPort1 get port c1
          -- --id=@monPort2 get port c2
          -- --id=@AnalyzerPort get port c3
          -- --id=@mymirror1
          create mirror name=testMirror1 select-dst-port=@monPort1,@monPort2 output-port=@AnalyzerPort

      #查看Mirror配置
        [root@node2 ~]# ovs-vsctl list mirror
          _uuid : 2933ec23-2548-4726-9c0e-1af09be722e7
          external_ids : {}
          name : "testMirror1"
          output_port : 881345f5-af51-4a4c-9a74-7f0f1697f78e
          output_vlan : []
          select_all : false
          # "4eaa1eb5-3bc8-4df9-98c7-eaf254adacd4": 此为端口的uuid
          select_dst_port : [4eaa1eb5-3bc8-4df9-98c7-eaf254adacd4, 6ba87998-9176-499a-bfc7-ba6b054965ea]
          select_src_port : [4eaa1eb5-3bc8-4df9-98c7-eaf254adacd4, 6ba87998-9176-499a-bfc7-ba6b054965ea]
          select_vlan : []
          statistics : {tx_bytes=0, tx_packets=0}

      #查看C3端口上收到的报文:
        [root@node2 ~]# ip netns exec c3 tcpdump -enpi c3
          tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
          listening on c3, link-type EN10MB (Ethernet), capture size 65535 bytes
          03:38:47.558423 fa:9d:2c:d8:1c:f0 > Broadcast, ethertype ARP (0x0806), length 42: Request who-has 10.0.0.2 tell 10.0.0.1, length 28
          03:38:47.559365 da:a3:6e:d1:83:3c > fa:9d:2c:d8:1c:f0, ethertype ARP (0x0806), length 42: Reply 10.0.0.2 is-at da:a3:6e:d1:83:3c, length 28
          03:38:47.559488 fa:9d:2c:d8:1c:f0 > da:a3:6e:d1:83:3c, ethertype IPv4 (0x0800), length 98: 10.0.0.1 > 10.0.0.2: ICMP echo request, id 60252, seq 1, length 64
          03:38:47.559876 da:a3:6e:d1:83:3c > fa:9d:2c:d8:1c:f0, ethertype IPv4 (0x0800), length 98: 10.0.0.2 > 10.0.0.1: ICMP echo reply, id 60252, seq 1, length 64


      RSPAN的配置:
        ovs-vsctl
          -- --id=@myMirror2
          create mirror name=testRSPAN select-all=true select-vlan=10 output-vlan=20
          -- set bridge s1 mirrors=@myMirror2

      GRE隧道的SPAN配置参考:
        ovs-vsctl add-br br0
        ovs-vsctl add-port br0 eth0
        ovs-vsctl add-port br0 tap0
        ovs-vsctl add-port br0 gre0
          -- set interface gre0 type=gre options:remote_ip=192.168.1.10
          -- --id=@p get port gre0
          -- --id=@m create mirror name=m0 select-all=true output-port=@p
          -- set bridge br0 mirrors=@m

      删除SPAN 和 删除 GRE参考:
        ovs-vsctl clear bridge br0 mirrors
        ovs-vsctl del-port br0 gre0

    OpenVSwitch2.0.0版本则参考配置:

      # ovs-vsctl -- set Bridge br-vxlan mirrors=@my1
           -- --id=@m1 get port tun0 -- --id=@a1 get port p1
           -- --id=@my1 create mirror name=t1 select-dst-port=@m1 select-src-port=@m1 output-port=@a1
        85df4437-c903-4110-9061-1d54d36c0427
      

      # ovs-vsctl list mirror
        _uuid : 85df4437-c903-4110-9061-1d54d36c0427
        external_ids : {}
        name : "t1"
        output_port : 206ace18-b3e6-4423-9216-5088a60b82c1
        output_vlan : []
        select_all : false
        select_dst_port : [8e1dd937-dd97-4446-89c8-af304ff960a5]
        select_src_port : [8e1dd937-dd97-4446-89c8-af304ff960a5]
        select_vlan : []
        statistics : {tx_bytes=0, tx_packets=0}

  • 相关阅读:
    【转】【WCF】WCF中客户端生成代理的两种方式
    【WPF】鼠标拖拽功能DragOver和Drop
    【转】【Android】Android不同版本下Notification创建方法
    【C#】获取电脑DPI
    【转】7Z命令行解压缩
    【转】【C#】ZIP、RAR 压缩与解压缩
    【MySQL】字符串截取之substring_index
    【转】【Java/Android】Intent的简介以及属性的详解
    友盟分享和cocos2dx符合重复duplicate symbol 解决方案
    slimphp中间件调用流程的理解
  • 原文地址:https://www.cnblogs.com/wn1m/p/11281938.html
Copyright © 2020-2023  润新知