题目描述
金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:
主件 附件
电脑 打印机,扫描仪
书柜 图书
书桌 台灯,文具
工作椅 无
如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有00个、11个或22个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的NN元。于是,他把每件物品规定了一个重要度,分为55等:用整数1-51−5表示,第55等最重要。他还从因特网上查到了每件物品的价格(都是1010元的整数倍)。他希望在不超过NN元(可以等于NN元)的前提下,使每件物品的价格与重要度的乘积的总和最大。
设第jj件物品的价格为v_[j]v[j],重要度为w_[j]w[j],共选中了kk件物品,编号依次为j_1,j_2,…,j_kj1,j2,…,jk,则所求的总和为:
v_[j_1] imes w_[j_1]+v_[j_2] imes w_[j_2]+ …+v_[j_k] imes w_[j_k]v[j1]×w[j1]+v[j2]×w[j2]+…+v[jk]×w[jk]。
请你帮助金明设计一个满足要求的购物单。
输入输出格式
输入格式:
第11行,为两个正整数,用一个空格隔开:
N mNm (其中N(<32000)N(<32000)表示总钱数,m(<60)m(<60)为希望购买物品的个数。) 从第22行到第m+1m+1行,第jj行给出了编号为j-1j−1的物品的基本数据,每行有33个非负整数
v p qvpq (其中vv表示该物品的价格(v<10000v<10000),p表示该物品的重要度(1-51−5),qq表示该物品是主件还是附件。如果q=0q=0,表示该物品为主件,如果q>0q>0,表示该物品为附件,qq是所属主件的编号)
输出格式:
一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<200000<200000)。
输入输出样例
2200
思路:可以看出这个是0/1背包的扩展 每一件物品都被分成了主件和附件 所以我们可以枚举主件 在主件中讨论拿附件的情况:
1.不选,然后去考虑下一个
2.选且只选这个主件
3.选这个主件,并且选附件1
4.选这个主件,并且选附件2
5.选这个主件,并且选附件1和附件2.
#include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<string> #include<vector> #include<stack> #include<bitset> #include<cstdlib> #include<cmath> #include<set> #include<list> #include<deque> #include<map> #include<queue> #define ll long long int using namespace std; inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;} inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;} int moth[13]={0,31,28,31,30,31,30,31,31,30,31,30,31}; int dir[4][2]={1,0 ,0,1 ,-1,0 ,0,-1}; int dirs[8][2]={1,0 ,0,1 ,-1,0 ,0,-1, -1,-1 ,-1,1 ,1,-1 ,1,1}; const int inf=0x3f3f3f3f; const ll mod=1e9+7; int v[100][3]; int p[100][3]; int size[100]; int dp[32007]; int main(){ ios::sync_with_stdio(false); // memset(dp,inf,sizeof(dp)); int n,m; cin>>n>>m; //int tot=1; for(int i=1;i<=m;i++){ int vv,pp,ff; cin>>vv>>pp>>ff; if(!ff){ v[i][size[i]]=vv; p[i][size[i]]=pp; ++size[i]; }else{ v[ff][size[ff]]=vv; p[ff][size[ff]]=pp; ++size[ff]; } } for(int i=1;i<=m;i++){ if(size[i]==0) continue; for(int j=n;j>=1;j--){ if(j-v[i][0]>=0&&size[i]>=1) dp[j]=max(dp[j],dp[j-v[i][0]]+v[i][0]*p[i][0]); if(j-v[i][1]-v[i][0]>=0&&size[i]>=2) dp[j]=max(dp[j],dp[j-v[i][1]-v[i][0]]+v[i][1]*p[i][1]+v[i][0]*p[i][0]); if(j-v[i][2]-v[i][0]>=0&&size[i]>=3) dp[j]=max(dp[j],dp[j-v[i][2]-v[i][0]]+v[i][2]*p[i][2]+v[i][0]*p[i][0]); if(j-v[i][2]-v[i][0]-v[i][1]>=0&&size[i]>=3) dp[j]=max(dp[j],dp[j-v[i][2]-v[i][0]-v[i][1]]+ v[i][1]*p[i][1]+v[i][2]*p[i][2]+v[i][0]*p[i][0]); } } cout<<dp[n]<<endl; return 0; }