• 2020.1.11考试总结


    恭贺 treAKer毒瘤之神的考验 一题中取得 rank1 的好成绩,成为新一届 毒瘤之神 !
    ......
    结果今天就考了 treAKer 的毒瘤题...

    T1
    考场上看到1e6就想O(n)的做法,结果失败了...
    正解思路很神奇,就是先对物品按照a来排序,询问按照m来排序,用双指针一起扫,同时维护(f_i) 当物品的和为i时 在所有的方案中,最小的b最大 的方案中的 b值。判一下(f_i)和m+s的大小关系即可。

    #include<algorithm>
    #include<cstring>
    #include<iostream>
    #include<cstdio>
    using namespace std;
    int n, Q, now;
    const int N = 1005;
    int ans[1000010], f[100010];
    struct wu 
    {
    	int a, b, c;
    	friend bool operator <(const wu &a, const wu &b){return a.a < b.a;}
    } w[1005];
    struct Ask 
    {
    	int m, k, s, id;
    	friend bool operator <(const Ask &a, const Ask &b){return a.m < b.m;}
    } q[1000010];
    inline int read() 
    {
    	int res = 0; char ch = getchar(); bool XX = false;
    	for (; !isdigit(ch); ch = getchar())(ch == '-') && (XX = true);
    	for (; isdigit(ch); ch = getchar())res = (res << 3) + (res << 1) + (ch ^ 48);
    	return XX ? -res : res;
    }
    int main() 
    {
    	cin >> n;
    	for (int i = 1; i <= n; ++i)w[i].c = read(), w[i].a = read(), w[i].b = read();
    	cin >> Q;
    	for (int i = 1; i <= Q; ++i)q[i].m = read(), q[i].k = read(), q[i].s = read(), q[i].id = i;
    	sort(w + 1, w + 1 + n); sort(q + 1, q + 1 + Q);
    	now = 1; f[0] = 1 << 30;
    	for (int i = 1; i <= Q; ++i) 
    	{
    		while (w[now].a <= q[i].m && now <= n) 
    		{
    			for (int k = 100000; k >= w[now].c; --k) 
    				f[k] = max(f[k], min(f[k - w[now].c], w[now].b));
    			++now;
    		}
    		ans[q[i].id] = (f[q[i].k] > q[i].m + q[i].s);
    	}
    	for (int i = 1; i <= Q; ++i)puts(ans[i] ? "TAK" : "NIE");
    	return 0;
    }
    

    T2
    (O(n^2))的DP很好推,f[i]=min(f[j],max(h[j+1...i]))((sum[i]-sum[j] le L))
    发现最大值在一定的区间内不会变,并且j越小,f值越小,单调栈优化DP一下...
    停,怎么只有95分啊?原来这不是正解啊..会被h单调递减的数据卡成(O(n^2))...
    其实这时候看情况只要翻转一下序列就行了,又变成(O(n))了...
    但会被h一大一小的数据卡掉...,虽然没有这样的数据,但我还是要讲一下正解。
    正解就是用线段树优化DP,同时维护f和max就可以了。
    事实证明,暴力还是很重要的.
    考场95分代码

    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<ctime>
    #define int long long
    using namespace std;
    int n, L, top, cnt;
    const int N = 100010;
    int h[N], w[N], s[N], f[N], l[N], zhan[N];
    inline int read() 
    {
    	int res = 0; char ch = getchar(); bool XX = false;
    	for (; !isdigit(ch); ch = getchar())(ch == '-') && (XX = true);
    	for (; isdigit(ch); ch = getchar())res = (res << 3) + (res << 1) + (ch ^ 48);
    	return XX ? -res : res;
    }
    void solve1() 
    {
    	int tmp, mx;
    	memset(f, 0x3f, sizeof(f)); f[0] = 0;
    	for (int i = 1; i <= n; ++i) 
    	{
    		tmp = 0; mx = -1;
    		for (int j = i; j >= 1; --j) 
    		{
    			tmp += w[j]; mx = max(mx, h[j]);
    			if (tmp > L)break;
    			f[i] = min(f[i], f[j - 1] + mx);
    		}
    	}
    	cout << f[n];
    }
    void solve2() 
    {
    	for (int i = 1; i <= n; ++i) 
    	{
    		while (top && h[zhan[top]] <= h[i])--top;
    		l[i] = zhan[top]; zhan[++top] = i;
    	}
    	for (int i = 1; i <= n; ++i)s[i] = s[i - 1] + w[i];
    	int tmp, mx, pos;
    	memset(f, 0x3f, sizeof(f)); f[0] = 0;
    	for (int i = 1; i <= n; ++i) 
    	{
    		pos = i + 1;
    		while (1) 
    		{
    			mx = h[pos - 1]; pos = l[pos - 1] + 1; tmp = s[i] - s[pos - 1];
    			if (tmp > L)pos = lower_bound(s + 1, s + 1 + n, s[i] - L) - s;
    			while (s[i] - s[pos - 1] > L)pos++;
    			f[i] = min(f[i], f[pos - 1] + mx);
    			if (pos == 1 || tmp > L)break;
    		}
    	}
    	cout << f[n];
    }
    int TT;
    inline void Swap(int &x, int &y) {TT = x; x = y; y = TT;}
    signed main() 
    {
    	cin >> n >> L;
    	h[0] = 1e15;
    	for (int i = 1; i <= n; ++i)h[i] = read(), w[i] = read(), cnt += (h[i] < h[i - 1]);
    	if (cnt > n / 2) 
    		for (int i = 1, to = n / 2; i <= to; ++i)Swap(h[i], h[n - i + 1]), Swap(w[i], w[n - i + 1]);
    	if (n <= 5000)solve1();
    	else solve2();
    	fclose(stdin); fclose(stdout);
    	return 0;
    }
    

    正解

    #include<algorithm>
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #define int long long
    #define lson (k<<1)
    #define rson ((k<<1)|1)
    using namespace std;
    int n, L, top;
    const int N = 100010, inf = 1e18;
    int h[N], w[N], s[N], l[N], dp[N], zhan[N], sum[N];
    int tr[N << 2], f[N << 2], tag[N << 2];
    inline int read() 
    {
    	int res = 0; char ch = getchar(); bool XX = false;
    	for (; !isdigit(ch); ch = getchar())(ch == '-') && (XX = true);
    	for (; isdigit(ch); ch = getchar())res = (res << 3) + (res << 1) + (ch ^ 48);
    	return XX ? -res : res;
    }
    void upd(int k) 
    {
    	f[k] = min(f[lson], f[rson]); tr[k] = min(tr[lson], tr[rson]);
    }
    void down(int k) 
    {
    	if (tag[k] == inf)return;
    	tr[lson] = f[lson] + tag[k]; tr[rson] = f[rson] + tag[k];
    	tag[lson] = tag[rson] = tag[k];
    	tag[k] = inf;
    }
    void build(int k, int l, int r) 
    {
    	tr[k] = f[k] = tag[k] = inf;
    	if (l == r)return;
    	int mid = (l + r) >> 1;
    	build(lson, l, mid); build(rson, mid + 1, r);
    }
    void Insert(int k, int l, int r, int pos) 
    {
    	if (l == r) 
    	{
    		f[k] = dp[pos - 1]; tr[k] = inf;
    		return;
    	}
    	down(k);
    	int mid = (l + r) >> 1;
    	if (pos <= mid)Insert(lson, l, mid, pos);
    	else Insert(rson, mid + 1, r, pos);
    }
    void change(int k, int l, int r, int x, int y, int val) 
    {
    	if (x <= l && r <= y) 
    	{
    		tr[k] = f[k] + val; tag[k] = val;
    		return;
    	}
    	down(k);
    	int mid = (l + r) >> 1;
    	if (x <= mid)change(lson, l, mid, x, y, val);
    	if (mid + 1 <= y)change(rson, mid + 1, r, x, y, val);
    	upd(k);
    }
    int ask(int k, int l, int r, int x, int y) 
    {
    	if (x <= l && r <= y)return tr[k];
    	down(k);
    	int mid = (l + r) >> 1, ans = inf;
    	if (x <= mid)ans = min(ans, ask(lson, l, mid, x, y));
    	if (mid + 1 <= y)ans = min(ans, ask(rson, mid + 1, r, x, y));
    	return ans;
    }
    signed main() 
    {
    	cin >> n >> L;
    	for (int i = 1; i <= n; ++i)h[i] = read(), w[i] = read(), sum[i] = sum[i - 1] + w[i];
    	for (int i = 1; i <= n; ++i) 
    	{
    		while (top && h[zhan[top]] <= h[i])--top;
    		l[i] = zhan[top]; zhan[++top] = i;
    	}
    	build(1, 1, n);
    	for (int i = 1; i <= n; ++i) 
    	{
    		Insert(1, 1, n, i);
    		change(1, 1, n, l[i] + 1, i, h[i]);
    		int pos = lower_bound(sum, sum + i + 1, sum[i] - L) - sum;
    		if (pos < i)dp[i] = ask(1, 1, n, pos + 1, i);
    	}
    	cout << dp[n];
    	fclose(stdin); fclose(stdout);
    	return 0;
    }
    

    T3
    考场上只码了55分部分分,还调了1个小时...
    有两种操作,询问链上第k小和连边,分别对应主席树和LCT。
    但很明显我们并不能同时维护,所以我们选择放弃LCT
    对于连边操作,我们根据启发式合并的思想合并,将较小的那棵树重建就行了。
    treAKer :我要卡你们空间!
    woc..那还得节点回收,而且有一大堆细节,调了半天.

    #include<algorithm>
    #include<iostream>
    #include<cstdio>
    using namespace std;
    int Tcase, n, m, T, tot, cnt, x, y, k, lastans, lca, falca, js, top;
    const int N = 80010;
    int head[N], val[N], b[N], siz[N], shu[N], root[N], dep[N], fa[N][18];
    int zhan[N * 20];
    int sum[N * 100], lson[N * 100], rson[N * 100];
    char opt[3];
    struct bian 
    {
    	int to, nt;
    } e[N << 1];
    void add(int f, int t) 
    {
    	e[++tot] = (bian) {t, head[f]};
    	head[f] = tot;
    }
    inline int read() 
    {
    	int res = 0; char ch = getchar(); bool XX = false;
    	for (; !isdigit(ch); ch = getchar())(ch == '-') && (XX = true);
    	for (; isdigit(ch); ch = getchar())res = (res << 3) + (res << 1) + (ch ^ 48);
    	return XX ? -res : res;
    }
    int LCA(int x, int y) 
    {
    	if (dep[x] < dep[y])swap(x, y);
    	for (int i = 17; i >= 0; --i)
    		if (fa[x][i] && dep[fa[x][i]] >= dep[y])x = fa[x][i];
    	if (x == y)return x;
    	for (int i = 17; i >= 0; --i)
    		if (fa[x][i] != fa[y][i])x = fa[x][i], y = fa[y][i];
    	return fa[x][0];
    }
    void change(int pre, int &k, int l, int r, int pos, int val) 
    {
    	k = (top ? zhan[top--] : ++js);
    	sum[k] = sum[pre] + val, rson[k] = rson[pre], lson[k] = lson[pre];
    	if (l == r)return;
    	int mid = (l + r) >> 1;
    	if (pos <= mid)change(lson[pre], lson[k], l, mid, pos, val);
    	else change(rson[pre], rson[k], mid + 1, r, pos, val);
    }
    void dfs(int x, int f, int s) 
    {
    	fa[x][0] = f; dep[x] = dep[f] + 1; shu[x] = s; ++siz[s];
    	for (int i = 1; i <= 17; ++i)
    		fa[x][i] = fa[fa[x][i - 1]][i - 1];
    	change(root[f], root[x], 1, cnt, val[x], 1);
    	for (int i = head[x]; i; i = e[i].nt)
    		if (e[i].to != f)dfs(e[i].to, x, s);
    }
    void hui(int &k, int fa) 
    {
    	if (!k)return;
    	if (lson[k] != lson[fa])hui(lson[k], lson[fa]);
    	if (rson[k] != rson[fa])hui(rson[k], rson[fa]);
    	zhan[++top] = k; lson[k] = rson[k] = 0; k = 0;
    }
    void dfs2(int x, int fa) 
    {
    	for (int i = head[x]; i; i = e[i].nt)
    		if (e[i].to != fa)dfs2(e[i].to, x);
    	hui(root[x], root[fa]);
    }
    int ask(int a, int b, int c, int d, int l, int r, int k) 
    {
    	if (l == r)return l;
    	int mid = (l + r) >> 1, tmp = sum[lson[a]] + sum[lson[b]] - sum[lson[c]] - sum[lson[d]];
    	if (k <= tmp)return ask(lson[a], lson[b], lson[c], lson[d], l, mid, k);
    	else return ask(rson[a], rson[b], rson[c], rson[d], mid + 1, r, k - tmp);
    }
    int main() 
    {
    	cin >> Tcase >> n >> m >> T;
    	for (int i = 1; i <= n; ++i)val[i] = b[i] = read();
    	sort(b + 1, b + 1 + n);
    	cnt = unique(b + 1, b + 1 + n) - b - 1;
    	for (int i = 1; i <= n; ++i)val[i] = lower_bound(b + 1, b + 1 + cnt, val[i]) - b;
    	for (int i = 1; i <= m; ++i) 
    	{
    		x = read(); y = read();
    		add(x, y); add(y, x);
    	}
    	for (int i = 1; i <= n; ++i)
    		if (!shu[i])dfs(i, 0, i);
    	while (T--) 
    	{
    		scanf("%s", opt);
    		if (opt[0] == 'Q') 
    		{
    			x = read()^lastans; y = read()^lastans; k = read()^lastans;
    			lca = LCA(x, y); falca = fa[lca][0];
    			printf("%d
    ", lastans = b[ask(root[x], root[y], root[lca], root[falca], 1, cnt, k)]);
    		} 
    		else 
    		{
    			x = read()^lastans; y = read()^lastans;
    			if (siz[shu[x]] > siz[shu[y]])dfs2(shu[y], 0), dfs(y, x, shu[x]);
    			else dfs2(shu[x], 0), dfs(x, y, shu[y]);
    			add(x, y); add(y, x);
    		}
    	}
    	fclose(stdin); fclose(stdout);
    	return 0;
    }
    
  • 相关阅读:
    【leetcode】Triangle (#120)
    【leetcode】Unique Binary Search Trees (#96)
    【leetcode】Maximum Subarray (53)
    【转】算法杂货铺——k均值聚类(K-means)
    EM算法总结
    人工智能聚类算法总结
    K-MEANS算法总结
    在线制作css动画——CSS animate
    IOS 固定定位底部input输入框,获取焦点时弹出的输入法键盘挡住input
    响应式、手机端、自适应 百分比实现div等宽等高的方法
  • 原文地址:https://www.cnblogs.com/wljss/p/12181360.html
Copyright © 2020-2023  润新知