神经网络训练的时候,我们需要将模型保存下来,方便后面继续训练或者用训练好的模型进行测试。因此,我们需要创建一个saver保存模型。
1 def run_training(): 2 data_dir = 'C:/Users/wk/Desktop/bky/dataSet/' 3 log_dir = 'C:/Users/wk/Desktop/bky/log/' 4 image,label = inputData.get_files(data_dir) 5 image_batches,label_batches = inputData.get_batches(image,label,32,32,16,20) 6 print(image_batches.shape) 7 p = model.mmodel(image_batches,16) 8 cost = model.loss(p,label_batches) 9 train_op = model.training(cost,0.001) 10 acc = model.get_accuracy(p,label_batches) 11 12 sess = tf.Session() 13 init = tf.global_variables_initializer() 14 sess.run(init) 15 saver = tf.train.Saver() 16 coord = tf.train.Coordinator() 17 threads = tf.train.start_queue_runners(sess = sess,coord = coord) 18 19 try: 20 for step in np.arange(1000): 21 print(step) 22 if coord.should_stop(): 23 break 24 _,train_acc,train_loss = sess.run([train_op,acc,cost]) 25 print("loss:{} accuracy:{}".format(train_loss,train_acc)) 26 if step % 100 == 0: 27 check = os.path.join(log_dir,"model.ckpt") 28 saver.save(sess,check,global_step = step) 29 except tf.errors.OutOfRangeError: 30 print("Done!!!") 31 finally: 32 coord.request_stop() 33 coord.join(threads) 34 sess.close()
训练好的模型信息会记录在checkpoint文件中,大致如下:
model_checkpoint_path: "C:/Users/wk/Desktop/bky/log/model.ckpt-100" all_model_checkpoint_paths: "C:/Users/wk/Desktop/bky/log/model.ckpt-0" all_model_checkpoint_paths: "C:/Users/wk/Desktop/bky/log/model.ckpt-100"
其余还会生成一些文件,分别记录了模型参数等信息,后边测试的时候程序会读取checkpoint文件去加载这些真正的数据文件
构建好神经网络进行训练完成后,如果用之前的代码直接进行测试,会报shape不符合的错误,大致是卷积层的输入与图像的shape不一致,这是因为上篇的代码,将weights和biases定义在了模型的外面,调用模型的时候,出现valueError的错误。
因此,我们需要将参数定义在模型里面,加载训练好的模型参数时,训练好的参数才能够真正初始化模型。重写模型函数如下
1 def mmodel(images,batch_size): 2 with tf.variable_scope('conv1') as scope: 3 weights = tf.get_variable('weights', 4 shape = [3,3,3, 16], 5 dtype = tf.float32, 6 initializer=tf.truncated_normal_initializer(stddev=0.1,dtype=tf.float32)) 7 biases = tf.get_variable('biases', 8 shape=[16], 9 dtype=tf.float32, 10 initializer=tf.constant_initializer(0.1)) 11 conv = tf.nn.conv2d(images, weights, strides=[1,1,1,1], padding='SAME') 12 pre_activation = tf.nn.bias_add(conv, biases) 13 conv1 = tf.nn.relu(pre_activation, name= scope.name) 14 with tf.variable_scope('pooling1_lrn') as scope: 15 pool1 = tf.nn.max_pool(conv1, ksize=[1,2,2,1],strides=[1,2,2,1], 16 padding='SAME', name='pooling1') 17 norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001/9.0, 18 beta=0.75,name='norm1') 19 with tf.variable_scope('conv2') as scope: 20 weights = tf.get_variable('weights', 21 shape=[3,3,16,128], 22 dtype=tf.float32, 23 initializer=tf.truncated_normal_initializer(stddev=0.1,dtype=tf.float32)) 24 biases = tf.get_variable('biases', 25 shape=[128], 26 dtype=tf.float32, 27 initializer=tf.constant_initializer(0.1)) 28 conv = tf.nn.conv2d(norm1, weights, strides=[1,1,1,1],padding='SAME') 29 pre_activation = tf.nn.bias_add(conv, biases) 30 conv2 = tf.nn.relu(pre_activation, name='conv2') 31 with tf.variable_scope('pooling2_lrn') as scope: 32 norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001/9.0, 33 beta=0.75,name='norm2') 34 pool2 = tf.nn.max_pool(norm2, ksize=[1,2,2,1], strides=[1,1,1,1], 35 padding='SAME',name='pooling2') 36 with tf.variable_scope('local3') as scope: 37 reshape = tf.reshape(pool2, shape=[batch_size, -1]) 38 dim = reshape.get_shape()[1].value 39 weights = tf.get_variable('weights', 40 shape=[dim,4096], 41 dtype=tf.float32, 42 initializer=tf.truncated_normal_initializer(stddev=0.005,dtype=tf.float32)) 43 biases = tf.get_variable('biases', 44 shape=[4096], 45 dtype=tf.float32, 46 initializer=tf.constant_initializer(0.1)) 47 local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name) 48 with tf.variable_scope('softmax_linear') as scope: 49 weights = tf.get_variable('softmax_linear', 50 shape=[4096, 2], 51 dtype=tf.float32, 52 initializer=tf.truncated_normal_initializer(stddev=0.005,dtype=tf.float32)) 53 biases = tf.get_variable('biases', 54 shape=[2], 55 dtype=tf.float32, 56 initializer=tf.constant_initializer(0.1)) 57 softmax_linear = tf.add(tf.matmul(local3, weights), biases, name='softmax_linear') 58 return softmax_linear
测试训练好的模型
首先获取一张测试图像
1 def get_one_image(img_dir): 2 image = Image.open(img_dir) 3 plt.imshow(image) 4 image = image.resize([32, 32]) 5 image_arr = np.array(image) 6 return image_arr
加载模型,计算测试结果
1 def test(test_file): 2 log_dir = 'C:/Users/wk/Desktop/bky/log/' 3 image_arr = get_one_image(test_file) 4 5 with tf.Graph().as_default(): 6 image = tf.cast(image_arr, tf.float32) 7 image = tf.image.per_image_standardization(image) 8 image = tf.reshape(image, [1,32, 32, 3]) 9 print(image.shape) 10 p = model.mmodel(image,1) 11 logits = tf.nn.softmax(p) 12 x = tf.placeholder(tf.float32,shape = [32,32,3]) 13 saver = tf.train.Saver() 14 with tf.Session() as sess: 15 ckpt = tf.train.get_checkpoint_state(log_dir) 16 if ckpt and ckpt.model_checkpoint_path: 17 global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] 18 saver.restore(sess, ckpt.model_checkpoint_path) 19 print('Loading success) 20 else: 21 print('No checkpoint') 22 prediction = sess.run(logits, feed_dict={x: image_arr}) 23 max_index = np.argmax(prediction) 24 print(max_index)
前面主要是将测试图片标准化为网络的输入图像,15-19是加载模型文件,然后将图像输入到模型里即可