• TensorFlow 2.0 笔记(四)功能扩展


    第四章 神经网络优化

    1 回顾

    1.1 tf.keras 搭建神经网络八股——六步法

    1. import——导入所需的各种库和包

    2. x_train, y_train——导入数据集、自制数据集、数据增强

    3. model=tf.keras.models.Sequential

      /class MyModel(Model) model=MyModel——定义模型

    4. model.compile——配置模型

    5. model.fit——训练模型、断点续训

    6. model.summary——参数提取、acc/loss 可视化、前向推理实现应用

    import tensorflow as tf
    
    mnist = tf.keras.datasets.mnist
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0
    
    model = tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation='relu'),
        tf.keras.layers.Dense(10, activation='softmax')
    ])
    
    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
                  metrics=['sparse_categorical_accuracy'])
    
    model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
    
    model.summary()
    
    

    2 自制数据集,应对特定应用

    2.1 观察数据集数据结构,配成特征标签对

    mnist_image_label文件夹:

    image-20220420133546997

    四个文件分别对应为训练集图片、训练集标签、测试集图片、测试集标签
    图片文件夹:

    image-20220420133626490

    标签文件:

    image-20220420133704809

    代码mnist_train_ex1.py:

    import tensorflow as tf
    from PIL import Image
    import numpy as np
    import os
    
    train_path = './mnist_image_label/mnist_train_jpg_60000/'
    train_txt = './mnist_image_label/mnist_train_jpg_60000.txt'
    x_train_savepath = './mnist_image_label/mnist_x_train.npy'
    y_train_savepath = './mnist_image_label/mnist_y_train.npy'
    
    test_path = './mnist_image_label/mnist_test_jpg_10000/'
    test_txt = './mnist_image_label/mnist_test_jpg_10000.txt'
    x_test_savepath = './mnist_image_label/mnist_x_test.npy'
    y_test_savepath = './mnist_image_label/mnist_y_test.npy'
    
    
    def generateds(path, txt):
        f = open(txt, 'r')  # 以只读形式打开txt文件
        contents = f.readlines()  # 读取文件中所有行
        f.close()  # 关闭txt文件
        x, y_ = [], []  # 建立空列表
        for content in contents:  # 逐行取出
            value = content.split()  # 以空格分开,图片路径为value[0] , 标签为value[1] , 存入列表
            img_path = path + value[0]  # 拼出图片路径和文件名
            img = Image.open(img_path)  # 读入图片
            img = np.array(img.convert('L'))  # 图片变为8位宽灰度值的np.array格式
            img = img / 255.  # 数据归一化 (实现预处理)
            x.append(img)  # 归一化后的数据,贴到列表x
            y_.append(value[1])  # 标签贴到列表y_
            print('loading : ' + content)  # 打印状态提示
    
        x = np.array(x)  # 变为np.array格式
        y_ = np.array(y_)  # 变为np.array格式
        y_ = y_.astype(np.int64)  # 变为64位整型
        return x, y_  # 返回输入特征x,返回标签y_
    
    
    if os.path.exists(x_train_savepath) and os.path.exists(y_train_savepath) and os.path.exists(
            x_test_savepath) and os.path.exists(y_test_savepath):
        print('-------------Load Datasets-----------------')
        x_train_save = np.load(x_train_savepath)
        y_train = np.load(y_train_savepath)
        x_test_save = np.load(x_test_savepath)
        y_test = np.load(y_test_savepath)
        x_train = np.reshape(x_train_save, (len(x_train_save), 28, 28))
        x_test = np.reshape(x_test_save, (len(x_test_save), 28, 28))
    else:
        print('-------------Generate Datasets-----------------')
        x_train, y_train = generateds(train_path, train_txt)
        x_test, y_test = generateds(test_path, test_txt)
    
        print('-------------Save Datasets-----------------')
        x_train_save = np.reshape(x_train, (len(x_train), -1))
        x_test_save = np.reshape(x_test, (len(x_test), -1))
        np.save(x_train_savepath, x_train_save)
        np.save(y_train_savepath, y_train)
        np.save(x_test_savepath, x_test_save)
        np.save(y_test_savepath, y_test)
    
    model = tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation='relu'),
        tf.keras.layers.Dense(10, activation='softmax')
    ])
    
    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
                  metrics=['sparse_categorical_accuracy'])
    
    model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
    model.summary()
    

    2.2 数据增强,增大数据量

    1.数据增强(增大数据量)

    image_gen_train=tf.keras.preprocessing.image.ImageDataGenerator( 增强方法)
    image_gen_train.fit(x_train) 
    

    常用增强方法:

    • 缩放系数:rescale=所有数据将乘以提供的值
    • 随机旋转:rotation_range=随机旋转角度数范围宽度偏移:width_shift_range=随机宽度偏移量
    • 高度偏移:height_shift_range=随机高度偏移量水平翻转:horizontal_flip=是否水平随机翻转
    • 随机缩放:zoom_range=随机缩放的范围 [1-n,1+n]

    例:

    image_gen_train = ImageDataGenerator( 
    rescale=1./255, # 原像素值 0~255 归至 0~1 
    rotation_range=45, #随机 45 度旋转 
    width_shift_range=.15,  #随机宽度偏移 [-0.15,0.15) 
    height_shift_range=.15,  #随机高度偏移 [-0.15,0.15) 
    horizontal_flip=True, #随机水平翻转 
    zoom_range=0.5 # 随机缩放到 [1-50%,1+50%]
    

    代码 mnist_train_ex2.py:

    import tensorflow as tf
    from tensorflow.keras.preprocessing.image import ImageDataGenerator
    
    mnist = tf.keras.datasets.mnist
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0
    x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)  # 给数据增加一个维度,从(60000, 28, 28)reshape为(60000, 28, 28, 1)
    
    image_gen_train = ImageDataGenerator(
        rescale=1. / 1.,  # 如为图像,分母为255时,可归至0~1
        rotation_range=45,  # 随机45度旋转
        width_shift_range=.15,  # 宽度偏移
        height_shift_range=.15,  # 高度偏移
        horizontal_flip=False,  # 水平翻转
        zoom_range=0.5  # 将图像随机缩放阈量50%
    )
    image_gen_train.fit(x_train)
    
    model = tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation='relu'),
        tf.keras.layers.Dense(10, activation='softmax')
    ])
    
    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
                  metrics=['sparse_categorical_accuracy'])
    
    model.fit(image_gen_train.flow(x_train, y_train, batch_size=32), epochs=5, validation_data=(x_test, y_test),
              validation_freq=1)
    model.summary()
    
    

    注:

    1、model.fit(x_train,y_train,batch_size=32,……)变为 model.fit(image_gen_train.flow(x_train,y_train,batch_size=32), ……);

    2、数据增强函数的输入要求是 4 维,通过 reshape 调整;

    3、如果报错:缺少scipy 库,pip install scipy 即可。

    2.3 数据增强可视

    代码show_augmented _images.py

    # 显示原始图像和增强后的图像
    import tensorflow as tf
    from matplotlib import pyplot as plt
    from tensorflow.keras.preprocessing.image import ImageDataGenerator
    import numpy as np
    
    mnist = tf.keras.datasets.mnist
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
    
    image_gen_train = ImageDataGenerator(
        rescale=1. / 255,# 原像素值 0~255 归至 0~1 
        rotation_range=45,# 随机45度旋转
        width_shift_range=.15,# 宽度偏移
        height_shift_range=.15, # 高度偏移
        horizontal_flip=False,# 水平翻转
        zoom_range=0.5# 将图像随机缩放阈量50%
    )
    image_gen_train.fit(x_train)
    print("xtrain",x_train.shape)
    x_train_subset1 = np.squeeze(x_train[:12])
    print("xtrain_subset1",x_train_subset1.shape)
    print("xtrain",x_train.shape)
    x_train_subset2 = x_train[:12]  # 一次显示12张图片
    print("xtrain_subset2",x_train_subset2.shape)
    
    fig = plt.figure(figsize=(20, 2))
    plt.set_cmap('gray')
    # 显示原始图片
    for i in range(0, len(x_train_subset1)):
        ax = fig.add_subplot(1, 12, i + 1)
        ax.imshow(x_train_subset1[i])
    fig.suptitle('Subset of Original Training Images', fontsize=20)
    plt.show()
    
    # 显示增强后的图片
    fig = plt.figure(figsize=(20, 2))
    for x_batch in image_gen_train.flow(x_train_subset2, batch_size=12, shuffle=False):
        for i in range(0, 12):
            ax = fig.add_subplot(1, 12, i + 1)
            ax.imshow(np.squeeze(x_batch[i]))
        fig.suptitle('Augmented Images', fontsize=20)
        plt.show()
        break;
    
    

    image-20220420134553536

    image-20220420134605649

    3 断点续训,存取模型

    3.1 读取模型

    load_weights(路径文件名)

    checkpoint_save_path = "./checkpoint/mnist.ckpt"
    if os.path.exists(checkpoint_save_path + '.index'):
        print('-------------load the model-----------------')
        model.load_weights(checkpoint_save_path)
    

    3.2 保存模型

    借助 tensorflow 给出的回调函数,直接保存参数和网络

    tf.keras.callbacks.ModelCheckpoint(
             filepath= 路径文件名, 
             save_weights_only=True, 
             monitor='val_loss',   #   val_loss or loss  
             save_best_only=True)
    history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,  callbacks=[cp_callback])
    

    注:monitor 配合 save_best_only 可以保存最优模型,包括:训练损失最小模型、测试损失最小模型、训练准确率最高模型、测试准确率最高模型等。

    代码:

    import tensorflow as tf
    import os
    
    mnist = tf.keras.datasets.mnist
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0
    
    model = tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation='relu'),
        tf.keras.layers.Dense(10, activation='softmax')
    ])
    
    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
                  metrics=['sparse_categorical_accuracy'])
    
    checkpoint_save_path = "./checkpoint/mnist.ckpt"
    if os.path.exists(checkpoint_save_path + '.index'):
        print('-------------load the model-----------------')
        model.load_weights(checkpoint_save_path)
    
    cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                     save_weights_only=True,
                                                     save_best_only=True)
    
    history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                        callbacks=[cp_callback])
    model.summary()
    
    

    image-20220420135628122

    4 参数提取,写至文本

    4.1 提取可训练参数

    model.trainable_variables 模型中可训练的参数

    4.2 设置print输出格式

    np.set_printoptions(precision=小数点后按四舍五入保留几位,threshold=数组元素数量少于或等于门槛值,打印全部元素;否则打印门槛值+1 个元素,中间用省略号补充)

    >>> np.set_printoptions(precision=5)
    >>> print(np.array([1.123456789]))
    [1.12346]
    >>> np.set_printoptions(threshold=5)
    >>> print(np.arange(10))
    [0 1 2 … , 7 8 9]
    

    注:precision=np.inf 打印完整小数位;threshold=np.nan 打印全部数组元素。

    代码mnist_train_ex4.py:

    import tensorflow as tf
    import os
    import numpy as np
    # 设置显示全部内容 np.inf 表示无穷大
    np.set_printoptions(threshold=np.inf)
    mnist = tf.keras.datasets.mnist
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0
    model = tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation='relu'),
        tf.keras.layers.Dense(10, activation='softmax')
    ])
    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
                  metrics=['sparse_categorical_accuracy'])
    checkpoint_save_path = "./checkpoint/mnist.ckpt"
    if os.path.exists(checkpoint_save_path + '.index'):
        print('-------------load the model-----------------')
        model.load_weights(checkpoint_save_path)
    cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                     save_weights_only=True,
                                                     save_best_only=True)
    history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                        callbacks=[cp_callback])
    model.summary()
    print(model.trainable_variables)
    file = open('./weights.txt', 'w')
    for v in model.trainable_variables:
        file.write(str(v.name) + '\n')
        file.write(str(v.shape) + '\n')
        file.write(str(v.numpy()) + '\n')
    file.close()
    
    

    模型参数打印结果:

    image-20220420140247157

    weights.txt:
    image-20220420140700105

    5 acc/loss 可视化,查看效果

    5.1 acc曲线和loss曲线

    history=model.fit(训练集数据, 训练集标签, batch_size=, epochs=, validation_split=用作测试数据的比例,validation_data=测试集, validation_freq=测试频率)
    

    history:

    • loss:训练集
    • loss val_loss:测试集 loss
    • sparse_categorical_accuracy:训练集准确率v
    • al_sparse_categorical_accuracy:测试集准确率
    # 显示训练集和验证集的acc和loss曲线
    acc = history.history['sparse_categorical_accuracy']
    val_acc = history.history['val_sparse_categorical_accuracy']
    loss = history.history['loss']
    val_loss = history.history['val_loss']
    ###############################################    show   ###############################################
    
    # 显示训练集和验证集的acc和loss曲线
    acc = history.history['sparse_categorical_accuracy']
    val_acc = history.history['val_sparse_categorical_accuracy']
    loss = history.history['loss']
    val_loss = history.history['val_loss']
    
    plt.subplot(1, 2, 1)
    plt.plot(acc, label='Training Accuracy')
    plt.plot(val_acc, label='Validation Accuracy')
    plt.title('Training and Validation Accuracy')
    plt.legend()
    
    plt.subplot(1, 2, 2)
    plt.plot(loss, label='Training Loss')
    plt.plot(val_loss, label='Validation Loss')
    plt.title('Training and Validation Loss')
    plt.legend()
    plt.show()
    

    acc和loss曲线:

    image-20220420144947875

    代码mnist_train_ex5.py:

    import tensorflow as tf
    import os
    import numpy as np
    from matplotlib import pyplot as plt
    
    np.set_printoptions(threshold=np.inf)
    
    mnist = tf.keras.datasets.mnist
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0
    
    model = tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(256, activation='relu'),
        tf.keras.layers.Dense(10, activation='softmax')
    ])
    
    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
                  metrics=['sparse_categorical_accuracy'])
    
    checkpoint_save_path = "./checkpoint/mnist.ckpt"
    if os.path.exists(checkpoint_save_path + '.index'):
        print('-------------load the model-----------------')
        model.load_weights(checkpoint_save_path)
    
    cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                     save_weights_only=True,
                                                     # monitor='val_loss',
                                                     save_best_only=True)
    
    history = model.fit(x_train, y_train, batch_size=32, epochs=10, validation_data=(x_test, y_test), validation_freq=1,
                        callbacks=[cp_callback])
    model.summary()
    
    print(model.trainable_variables)
    file = open('./weights.txt', 'w')
    for v in model.trainable_variables:
        file.write(str(v.name) + '\n')
        file.write(str(v.shape) + '\n')
        file.write(str(v.numpy()) + '\n')
    file.close()
    
    ###############################################    show   ###############################################
    
    # 显示训练集和验证集的acc和loss曲线
    acc = history.history['sparse_categorical_accuracy']
    val_acc = history.history['val_sparse_categorical_accuracy']
    loss = history.history['loss']
    val_loss = history.history['val_loss']
    
    plt.figure(figsize=(8, 8))
    plt.subplot(1, 2, 1)
    plt.plot(acc, label='Training Accuracy')
    plt.plot(val_acc, label='Validation Accuracy')
    plt.title('Training and Validation Accuracy')
    plt.legend()
    
    plt.subplot(1, 2, 2)
    plt.plot(loss, label='Training Loss')
    plt.plot(val_loss, label='Validation Loss')
    plt.title('Training and Validation Loss')
    plt.legend()
    plt.show()
    
    

    6 应用程序,给图识物

    6.1 给图识物

    输入一张手写数字图片:

    image-20220420145035634

    神经网络自动识别出值:

    6

    手写十个数,正确率90%以上合格。

    6.2 前向传播执行应用

    predict(输入数据, batch_size=整数) 返回前向传播计算结果

    注:predict 参数详解。

    (1)x:输入数据,Numpy 数组(或者 Numpy 数组的列表,如果模型有多个输出);

    (2)batch_size:整数,由于 GPU 的特性,batch_size最好选用 8,16,32,64……,如果未指定,默认为 32;

    (3)verbose: 日志显示模式,0 或 1;

    (4)steps: 声明预测结束之前的总步数(批次样本),默认值 None;

    (5)返回:预测的 Numpy 数组(或数组列表)。

    from PIL import Image
    import numpy as np
    import tensorflow as tf
    
    model_save_path = './checkpoint/mnist.ckpt'
    
    model = tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(256, activation='relu'),
        tf.keras.layers.Dense(10, activation='softmax')])
    
    model.load_weights(model_save_path)  # 加载模型
    
    preNum = int(input("input the number of test pictures:"))  # 预测图片数量
    
    for i in range(preNum):
        image_path = input("the path of test picture:")  # 预测图片路径
        img = Image.open(image_path)  # 打开图片
        img = img.resize((28, 28), Image.ANTIALIAS)  # 调整尺寸和类型
        img_arr = np.array(img.convert('L'))
    
        for i in range(28):  # 二值化
            for j in range(28):
                if img_arr[i][j] < 200:
                    img_arr[i][j] = 255
                else:
                    img_arr[i][j] = 0
    
        img_arr = img_arr / 255.0
        x_predict = img_arr[tf.newaxis, ...]
        result = model.predict(x_predict)  # 预测
    
        pred = tf.argmax(result, axis=1)
    
        print('\n')
        tf.print(pred)  # 输出结果
    
    

    注:

    1、输出结果 pred 是张量,需要用 tf.print,print 打印出来是 tf.Tensor([1], shape=(1,), dtype=int64);

    2、去掉二值化,出现无法收敛问题,需要对数据集进行归一化。

  • 相关阅读:
    软工试水日报-纯js原生简易动态表格 3/15
    软工试水日报-Echarts动态柱形图 3/14
    大二下学期第一次结对作业(第一阶段)
    大二下学期之第一次结对作业(第一阶段)
    大二下每周总结
    大二下学期之第一次结对作业(第一阶段)
    大二下学期第一次结对作业(第一阶段)
    大二下学期第一次结对作业(第一阶段)
    大二下学期每日总结之第一次个人作业(第三阶段)
    大二下学期每日总结之第一次个人作业(第三阶段)
  • 原文地址:https://www.cnblogs.com/wkfvawl/p/16180225.html
Copyright © 2020-2023  润新知