第一章 Hive环境搭建
1.1 Hive引擎简介
Hive引擎包括:默认MR、。 tez、spark
Hive on Spark:Hive既作为存储元数据又负责SQL的解析优化,语法是HQL语法,执行引擎变成了Spark,Spark负责采用RDD执行。
Spark on Hive : Hive只作为存储元数据,Spark负责SQL解析优化,语法是Spark SQL语法,Spark负责采用RDD执行。
1.2 Hive on Spark配置
1)兼容性说明
注意:官网下载的Hive3.1.2和Spark3.0.0默认是不兼容的。因为Hive3.1.2支持的Spark版本是2.4.5,所以需要我们重新编译Hive3.1.2版本。
编译步骤:官网下载Hive3.1.2源码,修改pom文件中引用的Spark版本为3.0.0,如果编译通过,直接打包获取jar包。如果报错,就根据提示,修改相关方法,直到不报错,打包获取jar包。
2)在Hive所在节点部署Spark
如果之前已经部署了Spark,则该步骤可以跳过,但要检查SPARK_HOME的环境变量配置是否正确。
(1)Spark官网下载jar包地址:
http://spark.apache.org/downloads.html
(2)上传并解压解压spark-3.0.0-bin-hadoop3.2.tgz
[atguigu@hadoop102 software]$ tar -zxvf spark-3.0.0-bin-hadoop3.2.tgz -C /opt/module/
[atguigu@hadoop102 software]$ mv /opt/module/spark-3.0.0-bin-hadoop3.2 /opt/module/spark
(3)配置SPARK_HOME环境变量
[atguigu@hadoop102 software]$ sudo vim /etc/profile.d/my_env.sh
添加如下内容
# SPARK_HOME
export SPARK_HOME=/opt/module/spark
export PATH=$PATH:$SPARK_HOME/bin
source 使其生效
[atguigu@hadoop102 software]$ source /etc/profile.d/my_env.sh
3)在hive中创建spark配置文件
[atguigu@hadoop102 software]$ vim /opt/module/hive/conf/spark-defaults.conf
添加如下内容(在执行任务时,会根据如下参数执行)
spark.master yarn
spark.eventLog.enabled true
spark.eventLog.dir hdfs://hadoop102:8020/spark-history
spark.executor.memory 1g
spark.driver.memory 1g
在HDFS创建如下路径,用于存储历史日志
[atguigu@hadoop102 software]$ hadoop fs -mkdir /spark-history
4)向HDFS上传Spark纯净版jar包
说明1:由于Spark3.0.0非纯净版默认支持的是hive2.3.7版本,直接使用会和安装的Hive3.1.2出现兼容性问题。所以采用Spark纯净版jar包,不包含hadoop和hive相关依赖,避免冲突。
说明2:Hive任务最终由Spark来执行,Spark任务资源分配由Yarn来调度,该任务有可能被分配到集群的任何一个节点。所以需要将Spark的依赖上传到HDFS集群路径,这样集群中任何一个节点都能获取到。
(1)上传并解压spark-3.0.0-bin-without-hadoop.tgz
[atguigu@hadoop102 software]$ tar -zxvf /opt/software/spark-3.0.0-bin-without-hadoop.tgz
(2)上传Spark纯净版jar包到HDFS
[atguigu@hadoop102 software]$ hadoop fs -mkdir /spark-jars
[atguigu@hadoop102 software]$ hadoop fs -put spark-3.0.0-bin-without-hadoop/jars/* /spark-jars
5)修改hive-site.xml文件
[atguigu@hadoop102 ~]$ vim /opt/module/hive/conf/hive-site.xml
添加如下内容
<!--Spark依赖位置(注意:端口号8020必须和namenode的端口号一致)-->
<property>
<name>spark.yarn.jars</name>
<value>hdfs://hadoop102:8020/spark-jars/*</value>
</property>
<!--Hive执行引擎-->
<property>
<name>hive.execution.engine</name>
<value>spark</value>
</property>
1.3 Hive on Spark测试
(1)启动hive客户端
[atguigu@hadoop102 hive]$ bin/hive
(2)创建一张测试表
hive (default)> create table student(id int, name string);
(3)通过insert测试效果
hive (default)> insert into table student values(1,'abc');
若结果如下,则说明配置成功
如果报错,Execution
Error, return code 30041 from
org.apache.hadoop.hive.ql.exec.spark.SparkTask. Failed to create Spark
client for Spark session
就是指没有连接上spark.
已解决:
思路1: 就是Namenode的端口号问题,hdfs之间的端口号要统一,大家可以去hadoop文件夹里面去找,没改的话就是8020;
思路2: spark的/opt/module/spark/conf该目录中有个spark-env.sh.template
文件然后修改文件名为spark-env.sh
mv spark-env.sh.template spark-env.sh;
然后在该文件中添加:
export SPARK_DIST_CLASSPATH=$(hadoop classpath)
即可. 我是思路2解决的,因为全程跟着这个项目走,视频中确实没有改spark-env.sh这一步. 如果按视频中来做的,兼容性是没问题的.
思路3:在hive/conf/hive-site.xml中增加:(这里特地延长了hive和spark连接的时间,可以有效避免超时报错)
<!--Hive和spark连接超时时间-->
<property>
<name>hive.spark.client.connect.timeout</name>
<value>100000ms</value>
</property>
第二章 Yarn配置
2.1 增加ApplicationMaster资源比例
容量调度器对每个资源队列中同时运行的Application Master占用的资源进行了限制,该限制通过yarn.scheduler.capacity.maximum-am-resource-percent参数实现,其默认值是0.1,表示每个资源队列上Application Master最多可使用的资源为该队列总资源的10%,目的是防止大部分资源都被Application Master占用,而导致Map/Reduce Task无法执行。
生产环境该参数可使用默认值。但学习环境,集群资源总数很少,如果只分配10%的资源给Application Master,则可能出现,同一时刻只能运行一个Job的情况,因为一个Application Master使用的资源就可能已经达到10%的上限了。故此处可将该值适当调大。
(1)在hadoop102的/opt/module/hadoop-3.1.3/etc/hadoop/capacity-scheduler.xml文件中修改如下参数值
[atguigu@hadoop102 hadoop]$ vim capacity-scheduler.xml
(2)分发capacity-scheduler.xml配置文件
[atguigu@hadoop102 hadoop]$ xsync capacity-scheduler.xml
(3)关闭正在运行的任务,重新启动yarn集群
[atguigu@hadoop103 hadoop-3.1.3]$ sbin/stop-yarn.sh
[atguigu@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh
第三章 数仓开发环境
数仓开发工具可选用DBeaver或者DataGrip。两者都需要用到JDBC协议连接到Hive,故需要启动HiveServer2。
1.启动HiveServer2
[atguigu@hadoop102 hive]$ hiveserver2
2.配置DataGrip连接
1)创建连接
2)配置连接属性
所有属性配置,和Hive的beeline客户端配置一致即可。初次使用,配置过程会提示缺少JDBC驱动,按照提示下载即可。
3.测试使用
创建数据库gmall,并观察是否创建成功。
1)创建数据库
2)查看数据库
3)修改连接,指明连接数据库
4)选择当前数据库为gmall
第四章 数据准备
一般企业在搭建数仓时,业务系统中会存在一定的历史数据,此处为模拟真实场景,需准备若干历史数据。假定数仓上线的日期为2020-06-14,具体说明如下。
4.1 用户行为日志
用户行为日志,一般是没有历史数据的,故日志只需要准备2020-06-14一天的数据。具体操作如下:
https://www.cnblogs.com/wkfvawl/p/15834034.html
1)启动日志采集通道,包括Flume、Kafak等
2)修改两个日志服务器(hadoop102、hadoop103)中的/opt/module/applog/application.yml配置文件,将mock.date参数改为2020-06-14。
3)执行日志生成脚本lg.sh。
4)观察HDFS是否出现相应文件。
4.2 业务数据
业务数据一般存在历史数据,此处需准备2020-06-10至2020-06-14的数据。具体操作如下。
1)修改hadoop102节点上的/opt/module/db_log/application.properties文件,将mock.date、mock.clear,mock.clear.user三个参数调整为如图所示的值。
2)执行模拟生成业务数据的命令,生成第一天2020-06-10的历史数据。
[atguigu@hadoop102 db_log]$ java -jar gmall2020-mock-db-2021-01-22.jar
3)修改/opt/module/db_log/application.properties文件,将mock.date、mock.clear,mock.clear.user三个参数调整为如图所示的值。
4)执行模拟生成业务数据的命令,生成第二天2020-06-11的历史数据。
[atguigu@hadoop102 db_log]$ java -jar gmall2020-mock-db-2021-01-22.jar
5)之后只修改/opt/module/db_log/application.properties文件中的mock.date参数,依次改为2020-06-12,2020-06-13,2020-06-14,并分别生成对应日期的数据。
6)执行mysql_to_hdfs_init.sh脚本,将模拟生成的业务数据同步到HDFS。
[atguigu@hadoop102 bin]$ mysql_to_hdfs_init.sh all 2020-06-14
7)观察HDFS上是否出现相应的数据