• TensorFlow NormLization


    local_response_normalization

    local_response_normalization出现在论文”ImageNet Classification with deep Convolutional Neural Networks”中,论文中说,这种normalization对于泛化是有好处的. 


    经过了一个conv2d或pooling后,我们获得了[batch_size, height, width, channels]这样一个tensor.现在,将channels称之为层,不考虑batch_size

     1 tf.nn.local_response_normalization(input, depth_radius=None, bias=None, alpha=None, beta=None, name=None)
     2 '''
     3 Local Response Normalization.
     4 The 4-D input tensor is treated as a 3-D array of 1-D vectors (along the last dimension), and each vector is normalized independently. Within a given vector, each component is divided by the weighted, squared sum of inputs within depth_radius. In detail,
     5 '''
     6 """
     7 input: A Tensor. Must be one of the following types: float32, half. 4-D.
     8 depth_radius: An optional int. Defaults to 5. 0-D. Half-width of the 1-D normalization window.
     9 bias: An optional float. Defaults to 1. An offset (usually positive to avoid dividing by 0).
    10 alpha: An optional float. Defaults to 1. A scale factor, usually positive.
    11 beta: An optional float. Defaults to 0.5. An exponent.
    12 name: A name for the operation (optional).
    13 """

    举例子:

     1 import tensorflow as tf  
     2   
     3 a = tf.constant([  
     4     [[1.0, 2.0, 3.0, 4.0],  
     5      [5.0, 6.0, 7.0, 8.0],  
     6      [8.0, 7.0, 6.0, 5.0],  
     7      [4.0, 3.0, 2.0, 1.0]],  
     8     [[4.0, 3.0, 2.0, 1.0],  
     9      [8.0, 7.0, 6.0, 5.0],  
    10      [1.0, 2.0, 3.0, 4.0],  
    11      [5.0, 6.0, 7.0, 8.0]]  
    12 ])  
    13 #reshape a,get the feature map [batch:1 height:2 2 channels:8]  
    14 a = tf.reshape(a, [1, 2, 2, 8])  
    15   
    16 normal_a=tf.nn.local_response_normalization(a,2,0,1,1)  
    17 with tf.Session() as sess:  
    18     print("feature map:")  
    19     image = sess.run(a)  
    20     print (image)  
    21     print("normalized feature map:")  
    22     normal = sess.run(normal_a)  
    23     print (normal)  
    feature map:  
    [[[[ 1.  2.  3.  4.  5.  6.  7.  8.]  
       [ 8.  7.  6.  5.  4.  3.  2.  1.]]  
      
      [[ 4.  3.  2.  1.  8.  7.  6.  5.]  
       [ 1.  2.  3.  4.  5.  6.  7.  8.]]]]  
    normalized feature map:  
    [[[[ 0.07142857  0.06666667  0.05454545  0.04444445  0.03703704  0.03157895  
         0.04022989  0.05369128]  
       [ 0.05369128  0.04022989  0.03157895  0.03703704  0.04444445  0.05454545  
         0.06666667  0.07142857]]  
      
      [[ 0.13793103  0.10000001  0.0212766   0.00787402  0.05194805  0.04  
         0.03448276  0.04545454]  
       [ 0.07142857  0.06666667  0.05454545  0.04444445  0.03703704  0.03157895  
         0.04022989  0.05369128]]]]  

      这里我取了n/2=2,k=0,α=1,β=1,举个例子,比如对于一通道的第一个像素“1”来说,我们把参数代人公式就是1/(1^2+2^2+3^2)=0.07142857,对于四通道的第一个像素“4”来说,公式就是4/(2^2+3^2+4^2+5^2+6^2)=0.04444445,以此类推

      注意:这里的feature_map为【1,2,2,8】,其中1代表图像的数量,2X2代表图像的长宽,8代表图像的层数(map),NRL主要是利用map去计算,然后计算的值为图像的长宽(像素),与图像的数量无关!

            我们可以这么理解,feature_map分割为直观的图像,第一个通道[1,8,4,1],第二个通道[2,7,3,2],第三个通道[3,6,2,3],以此类推。。。

          那么求解的过程和上面就一一对应了,其中在边角达不到n的时候,那就省略。

      能感觉到这种方法不好吗?效果肯定有的,因为对像素归一化了,有利于计算。但是对于一整幅图像来说反而没有什么太大的作用,因为归一化的种类不同,造成部分特征体现不出来,有时候反而不好。

    batch_normalization

       为什么有batch?上面结尾已经做了初步分析,也已经大概引出来对批量的图像做归一化,对单个图像做的归一化效果不好!

    可以看出,batch_normalization之后,数据的维数没有任何变化,只是数值发生了变化 
    OutOut作为下一层的输入 
    函数: 
    tf.nn.batch_normalization()

    def batch_normalization(x,
                            mean,
                            variance,
                            offset,
                            scale,
                            variance_epsilon,
                            name=None):

    Args:

    • x: Input Tensor of arbitrary dimensionality.
    • mean: A mean Tensor.
    • variance: A variance Tensor.
    • offset: An offset Tensor, often denoted ββ in equations, or None. If present, will be added to the normalized tensor.
    • scale: A scale Tensor, often denoted γγ in equations, or None. If present, the scale is applied to the normalized tensor.
    • variance_epsilon: A small float number to avoid dividing by 0.
    • name: A name for this operation (optional).
    • Returns: the normalized, scaled, offset tensor. 
      对于卷积,x:[bathc,height,width,depth] 
      对于卷积,我们要feature map中共享 γiγi 和 βiβi ,所以 γ,βγ,β的维度是[depth]

    现在,我们需要一个函数 返回mean和variance, 看下面.

    tf.nn.moments()

    def moments(x, axes, shift=None, name=None, keep_dims=False):
    # for simple batch normalization pass `axes=[0]` (batch only):

    对于卷积的batch_normalization, x 为[batch_size, height, width, depth],axes=[0,1,2],就会输出(mean,variance), mean 与 variance 均为标量。

     

    参考:

      https://blog.csdn.net/mao_xiao_feng/article/details/53488271

      https://www.jianshu.com/p/c06aea337d5d

      https://blog.csdn.net/u012436149/article/details/52985303

  • 相关阅读:
    敏捷思维-架构设计中的方法学(12)Refactoring
    敏捷思维-架构设计中的方法学(11)精化和合并
    敏捷思维-架构设计中的方法学(8)架构愿景
    敏捷思维-架构设计中的方法学(10)分层 (下)
    Agile 敏捷建模思想 作者:林星
    敏捷思维-架构设计中的方法学(9)分层 (上)
    敏捷思维-架构设计中的方法学(13)稳定化
    敏捷思维-架构设计中的方法学(15)进一步阅读
    hdu 1829+hdu 1856(并查集)
    hdu 1050+hdu 1789+hdu 3177(贪心)
  • 原文地址:https://www.cnblogs.com/wjy-lulu/p/8993897.html
Copyright © 2020-2023  润新知