• TensorFlow模型加载与保存


    我们经常遇到训练时间很长,使用起来就是Weight和Bias。那么如何将训练和测试分开操作呢?

    TF给出了模型的加载与保存操作,看了网上都是很简单的使用了一下,这里给出一个神经网络的小程序去测试。

    本博文使用了Titanic的数据进行操作:

    Train.Py

     1 import numpy as np
     2 import pandas as pd
     3 import tensorflow as tf
     4 from sklearn.model_selection import train_test_split
     5 
     6 ################################
     7 # Preparing Data
     8 ################################
     9 
    10 # read data from file
    11 data = pd.read_csv('data/train.csv')
    12 
    13 # fill nan values with 0
    14 data = data.fillna(0)
    15 # convert ['male', 'female'] values of Sex to [1, 0]
    16 data['Sex'] = data['Sex'].apply(lambda s: 1 if s == 'male' else 0)
    17 # 'Survived' is the label of one class,
    18 # add 'Deceased' as the other class
    19 data['Deceased'] = data['Survived'].apply(lambda s: 1 - s)
    20 
    21 # select features and labels for training
    22 dataset_X = data[['Sex', 'Age', 'Pclass', 'SibSp', 'Parch', 'Fare']].as_matrix()
    23 dataset_Y = data[['Deceased', 'Survived']].as_matrix()
    24 
    25 # split training data and validation set data
    26 X_train, X_val, y_train, y_val = train_test_split(dataset_X, dataset_Y,
    27                                                   test_size=0.2,
    28                                                   random_state=42)
    29 
    30 ################################
    31 # Constructing Dataflow Graph
    32 ################################
    33 
    34 # create symbolic variables
    35 X = tf.placeholder(tf.float32, shape=[None, 6])
    36 y = tf.placeholder(tf.float32, shape=[None, 2])
    37 
    38 # weights and bias are the variables to be trained
    39 weights = tf.Variable(tf.random_normal([6, 2]), name='weights')
    40 bias = tf.Variable(tf.zeros([2]), name='bias')
    41 y_pred = tf.nn.softmax(tf.matmul(X, weights) + bias)
    42 
    43 # Minimise cost using cross entropy
    44 # NOTE: add a epsilon(1e-10) when calculate log(y_pred),
    45 # otherwise the result will be -inf
    46 cross_entropy = - tf.reduce_sum(y * tf.log(y_pred + 1e-10),
    47                                 reduction_indices=1)
    48 cost = tf.reduce_mean(cross_entropy)
    49 
    50 # use gradient descent optimizer to minimize cost
    51 train_op = tf.train.GradientDescentOptimizer(0.001).minimize(cost)
    52 
    53 # calculate accuracy
    54 correct_pred = tf.equal(tf.argmax(y, 1), tf.argmax(y_pred, 1))
    55 acc_op = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    56 
    57 ################################
    58 # Training and Evaluating the model
    59 ################################
    60 saver = tf.train.Saver()
    61 # use session to run the calculation
    62 with tf.Session() as sess:
    63     # variables have to be initialized at the first place
    64     tf.global_variables_initializer().run()
    65     # training loop
    66     for epoch in range(10):
    67         total_loss = 0.
    68         for i in range(len(X_train)):
    69             # prepare feed data and run
    70             feed_dict = {X: [X_train[i]], y: [y_train[i]]}
    71             _, loss = sess.run([train_op, cost], feed_dict=feed_dict)
    72             total_loss += loss
    73         # display loss per epoch
    74         print('Epoch: %04d, total loss=%.9f' % (epoch + 1, total_loss))
    75     saver_path = saver.save(sess,"wjy_data/model.ckpt")
    76     # Accuracy calculated by TensorFlow
    77     accuracy = sess.run(acc_op, feed_dict={X: X_val, y: y_val})
    78     print("Accuracy on validation set: %.9f" % accuracy)
    79 
    80     # Accuracy calculated by NumPy
    81     pred = sess.run(y_pred, feed_dict={X: X_val})
    82     correct = np.equal(np.argmax(pred, 1), np.argmax(y_val, 1))
    83     numpy_accuracy = np.mean(correct.astype(np.float32))
    84     print("Accuracy on validation set (numpy): %.9f" % numpy_accuracy)
    85 
    86     # predict on test data
    87     testdata = pd.read_csv('data/test.csv')
    88     testdata = testdata.fillna(0)
    89     # convert ['male', 'female'] values of Sex to [1, 0]
    90     testdata['Sex'] = testdata['Sex'].apply(lambda s: 1 if s == 'male' else 0)
    91     X_test = testdata[['Sex', 'Age', 'Pclass', 'SibSp', 'Parch', 'Fare']]
    92     predictions = np.argmax(sess.run(y_pred, feed_dict={X: X_test}), 1)
    93     submission = pd.DataFrame({
    94         "PassengerId": testdata["PassengerId"],
    95         "Survived": predictions
    96     })
    97 
    98     submission.to_csv("titanic-submission.csv", index=False)

    注意:

      saver_path = saver.save(sess,"wjy_data/model.ckpt")
      项目目录下面必须新建一个wjy_data的文件夹,不然会报错!!!

    Test.Py

     1 import numpy as np
     2 import pandas as pd
     3 import tensorflow as tf
     4 from sklearn.model_selection import train_test_split
     5 
     6 # create symbolic variables
     7 X = tf.placeholder(tf.float32, shape=[None, 6])
     8 y = tf.placeholder(tf.float32, shape=[None, 2])
     9 
    10 # weights and bias are the variables to be trained
    11 weights = tf.Variable(tf.random_normal([6, 2]), name='weights')
    12 bias = tf.Variable(tf.zeros([2]), name='bias')
    13 y_pred = tf.nn.softmax(tf.matmul(X, weights) + bias)
    14 
    15 # predict on test data
    16 testdata = pd.read_csv('data/test.csv')
    17 testdata = testdata.fillna(0)
    18 # convert ['male', 'female'] values of Sex to [1, 0]
    19 testdata['Sex'] = testdata['Sex'].apply(lambda s: 1 if s == 'male' else 0)
    20 X_test = testdata[['Sex', 'Age', 'Pclass', 'SibSp', 'Parch', 'Fare']]
    21 ################################
    22 # Training and Evaluating the model
    23 ################################
    24 saver = tf.train.Saver()
    25 # use session to run the calculation
    26 with tf.Session() as sess:
    27     # variables have to be initialized at the first place
    28     tf.global_variables_initializer().run()
    29     #save_path = saver.save(sess,"Saved_model/model.ckpt")
    30     saver.restore(sess,"wjy_data/model.ckpt")#加载模型
    31     predictions = np.argmax(sess.run(y_pred, feed_dict={X: X_test}), 1)
    32     submission = pd.DataFrame({
    33         "PassengerId": testdata["PassengerId"],
    34         "Survived": predictions
    35     })
    36     #saver = tf.train.Saver()
    37     submission.to_csv("titanic-submission.csv", index=False)

    很方便的使用保存模型的方式去测试和训练数据,不然怎么办~~

    参考:

      《深度学习原理与TensorFlow实战》

      https://blog.csdn.net/lujiandong1/article/details/53301994

  • 相关阅读:
    HDU2037
    python爬取邮箱
    HDU1058
    opengl 光照
    HDU1421
    <cocos2dx for window phone>一个简单的打地鼠游戏
    <cocos2dx for wp7>使用cocos2dx制作基于Tile地图的游戏:加入敌人和战斗(三)
    <WP7>(五)手把手教你写天气预报程序:ApplicationBar的使用和ListPicker的数据绑定
    <cocos2dx for wp7>在cocos2dx里面手势识别
    <cocos2dx for wp7>使用cocos2dx制作基于Tile地图的游戏:碰撞检测和收集物品(二)
  • 原文地址:https://www.cnblogs.com/wjy-lulu/p/8953321.html
Copyright © 2020-2023  润新知