• 《机器学习实战》AdaBoost算法(手稿+代码)


    Adaboost:多个弱分类器组成一个强分类器,按照每个弱分类器的作用大小给予不同的权重

    一.Adaboost理论部分

      1.1 adaboost运行过程

        注释:算法是利用指数函数降低误差,运行过程通过迭代进行。其中函数的算法怎么来的,你不用知道!当然你也可以尝试使用其它的函数代替指数函数,看看效果如何。

      1.2 举例说明算法流程

        略,花几分钟就可以看懂的例子。见:《统计学习方法》李航大大

        博客都是借鉴(copy)李航博士的:http://blog.csdn.net/v_july_v/article/details/40718799 ,July算总结(copy)最好的吧!

      1.3 算法误差界的证明

        注释:误差的上界限由Zm约束,然而Zm又是由Gm(xi)约束,所以选择适当的Gm(xi)可以加快误差的减小。

    二.代码实现

      注释:这里参考大神博客http://blog.csdn.net/guyuealian/article/details/70995333,举例子很详细。

      2.1程序流程图

      2.2基本程序实现

        注释:真是倒霉玩意,本来代码全部注释好了,突然Ubuntu奔溃了,全部程序就GG了。。。下面的代码就是官网的代码,部分补上注释。现在使用Deepin桌面版了,其它方面都比Ubuntu好,但是有点点卡。 

      1 from numpy import *
      2 
      3 def loadDataSet(fileName):      #general function to parse tab -delimited floats
      4     numFeat = len(open(fileName).readline().split('	')) #get number of fields 
      5     dataMat = []; labelMat = []
      6     fr = open(fileName)
      7     for line in fr.readlines():
      8         lineArr =[]
      9         curLine = line.strip().split('	')
     10         for i in range(numFeat-1):
     11             lineArr.append(float(curLine[i]))
     12         dataMat.append(lineArr)
     13         labelMat.append(float(curLine[-1]))
     14     return dataMat,labelMat
     15 
     16 def stumpClassify(dataMatrix,dimen,threshVal,threshIneq):#just classify the data
     17     retArray = ones((shape(dataMatrix)[0],1))
     18     if threshIneq == 'lt':
     19         retArray[dataMatrix[:,dimen] <= threshVal] = -1.0
     20     else:
     21         retArray[dataMatrix[:,dimen] > threshVal] = -1.0
     22     return retArray
     23     
     24 
     25 def buildStump(dataArr,classLabels,D):
     26     dataMatrix = mat(dataArr); labelMat = mat(classLabels).T
     27     m,n = shape(dataMatrix)
     28     numSteps = 10.0; bestStump = {}; bestClasEst = mat(zeros((m,1)))
     29     minError = inf #init error sum, to +infinity
     30     for i in range(n):#loop over all dimensions
     31         rangeMin = dataMatrix[:,i].min(); rangeMax = dataMatrix[:,i].max();
     32         stepSize = (rangeMax-rangeMin)/numSteps
     33         for j in range(-1,int(numSteps)+1):#loop over all range in current dimension
     34             for inequal in ['lt', 'gt']: #go over less than and greater than
     35                 threshVal = (rangeMin + float(j) * stepSize)
     36                 predictedVals = stumpClassify(dataMatrix,i,threshVal,inequal)#call stump classify with i, j, lessThan
     37                 errArr = mat(ones((m,1)))
     38                 errArr[predictedVals == labelMat] = 0
     39                 weightedError = D.T*errArr  #calc total error multiplied by D
     40                 #print "split: dim %d, thresh %.2f, thresh ineqal: %s, the weighted error is %.3f" % (i, threshVal, inequal, weightedError)
     41                 if weightedError < minError:
     42                     minError = weightedError
     43                     bestClasEst = predictedVals.copy()
     44                     bestStump['dim'] = i
     45                     bestStump['thresh'] = threshVal
     46                     bestStump['ineq'] = inequal
     47     return bestStump,minError,bestClasEst
     48 
     49 
     50 def adaBoostTrainDS(dataArr,classLabels,numIt=40):
     51     weakClassArr = []
     52     m = shape(dataArr)[0]
     53     D = mat(ones((m,1))/m)   #init D to all equal
     54     aggClassEst = mat(zeros((m,1)))
     55     for i in range(numIt):
     56         bestStump,error,classEst = buildStump(dataArr,classLabels,D)#build Stump
     57         #print "D:",D.T
     58         alpha = float(0.5*log((1.0-error)/max(error,1e-16)))#calc alpha, throw in max(error,eps) to account for error=0
     59         bestStump['alpha'] = alpha  
     60         weakClassArr.append(bestStump)                  #store Stump Params in Array
     61         #print "classEst: ",classEst.T
     62         expon = multiply(-1*alpha*mat(classLabels).T,classEst) #exponent for D calc, getting messy
     63         D = multiply(D,exp(expon))                              #Calc New D for next iteration
     64         D = D/D.sum()
     65         #calc training error of all classifiers, if this is 0 quit for loop early (use break)
     66         aggClassEst += alpha*classEst
     67         #print "aggClassEst: ",aggClassEst.T
     68         aggErrors = multiply(sign(aggClassEst) != mat(classLabels).T,ones((m,1)))
     69         errorRate = aggErrors.sum()/m
     70         print ("total error: ",errorRate)
     71         if errorRate == 0.0: break
     72     return weakClassArr,aggClassEst
     73 
     74 def adaClassify(datToClass,classifierArr):
     75     dataMatrix = mat(datToClass)#do stuff similar to last aggClassEst in adaBoostTrainDS
     76     m = shape(dataMatrix)[0]
     77     aggClassEst = mat(zeros((m,1)))
     78     for i in range(len(classifierArr)):
     79         classEst = stumpClassify(dataMatrix,classifierArr[i]['dim'],
     80                                  classifierArr[i]['thresh'],
     81                                  classifierArr[i]['ineq'])#call stump classify
     82         aggClassEst += classifierArr[i]['alpha']*classEst
     83         #print aggClassEst
     84     return sign(aggClassEst)
     85 
     86 def plotROC(predStrengths, classLabels):
     87     import matplotlib.pyplot as plt
     88     cur = (1.0,1.0) #cursor
     89     ySum = 0.0 #variable to calculate AUC
     90     numPosClas = sum(array(classLabels)==1.0)#标签等于1的和(也等于个数)
     91     yStep = 1/float(numPosClas); xStep = 1/float(len(classLabels)-numPosClas)
     92     sortedIndicies = predStrengths.argsort()#get sorted index, it's reverse
     93     sortData = sorted(predStrengths.tolist()[0])
     94 
     95     fig = plt.figure()
     96     fig.clf()
     97     ax = plt.subplot(111)
     98     #loop through all the values, drawing a line segment at each point
     99     for index in sortedIndicies.tolist()[0]:
    100         if classLabels[index] == 1.0:
    101             delX = 0; delY = yStep;
    102         else:
    103             delX = xStep; delY = 0;
    104             ySum += cur[1]
    105         #draw line from cur to (cur[0]-delX,cur[1]-delY)
    106         ax.plot([cur[0],cur[0]-delX],[cur[1],cur[1]-delY], c='b')
    107         cur = (cur[0]-delX,cur[1]-delY)
    108     ax.plot([0,1],[0,1],'b--')
    109     plt.xlabel('False positive rate'); plt.ylabel('True positive rate')
    110     plt.title('ROC curve for AdaBoost horse colic detection system')
    111     ax.axis([0,1,0,1])
    112     plt.show()
    113     print ("the Area Under the Curve is: ",ySum*xStep)

     

    注释:重点说明一下非均衡分类的图像绘制问题,想了很久才想明白!

       都是相对而言的,其中本文说的曲线在左上方就为好,也是相对而言的,看你怎么定义个理解!

    参考文献:

        《统计学习方法》李航

          http://blog.csdn.net/v_july_v/article/details/40718799 没有书的就看这个大神的博客,基本是上面那本数的原版

  • 相关阅读:
    log4net 配置 一站式解决
    设计模式-职责链模式(ChainOfResponsibility)
    springboot+Kafka(生产者和消费者)
    springboot启动过程分析
    Eureka注册中心原理
    JDK8常量池整理
    第2章 Java内存区域与内存溢出异常
    第5章 数据库分库分表实例
    物理分页和内存分页-引用
    spring4体系架构
  • 原文地址:https://www.cnblogs.com/wjy-lulu/p/8087344.html
Copyright © 2020-2023  润新知