1、算法概述
1.1 算法分类
非线性时间比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此称为非线性时间比较类排序。
线性时间非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此称为线性时间非比较类排序。
1.2 算法复杂度
1.3 相关概念
稳定:如果a原本在b前面,而a = b,排序之后a仍然在b的前面
不稳定:如果a原本在b的前面,而a = b,排序之后a可能会出现在b的后面
时间复杂度:对排序数据的总的操作次数。反映当n变化时,操作次数呈现什么规律。
空间复杂度:是指算法在计算机内执行时所需存储空间的度量,它也是数据规模n的函数。
2、冒泡排序(Bubble Sort)
冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
2.1 算法描述
比较相邻的元素。如果第一个比第二个大,就交换它们两个。
对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数。
针对所有的元素重复以上的步骤,除了最后一个。
重复步骤1~3,直到排序完成。
2.2 动图演示
2.3 代码实现
# js 语言
1 function bubbleSort(arr) { 2 var len = arr.lenth; 3 for (var i = 0;i < len - 1;i++) {
for (var j = 0; j < len-1-i; j++) {
if (arr[j] > arr[j+1]) { # 相邻元素两两对比
var temp = arr[j+1]; # 交换元素
arr[j+1] = arr[j];
arr[j] = temp;
}
}
}
return arr;
}
# python语言
def bubble_sort(nums):
for i in range(len(nums) - 1): # 这个循环负责设置冒泡排序进行的次数
for j in range(len(nums) - i - 1): # j为列表的下标
if nums[j] > nums[j + 1]:
nums[j], nums[j + 1] = nums[j + 1], nums[j]
return nums
# c语言
void
bubble_sort(
int
a[],
int
n);
void
bubble_sort(
int
a[],
int
n)
{
int
i, j, temp;
for
(j = 0; j < n - 1; j++)
for
(i = 0; i < n - 1 - j; i++)
{
if
(a[i] > a[i + 1])
{
temp = a[i];
a[i] = a[i + 1];
a[i + 1] = temp;
}
}
}
int
main()
{
int
number[SIZE] = {95, 45, 15, 78, 84, 51, 24, 12};
int
i;
bubble_sort(number, SIZE);
for
(i = 0; i < SIZE; i++)
{
printf
(
"%d
"
, number[i]);
}
return
0;
}
3、选择排序(Selection Sort)
选择排序是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
3.1 算法描述
n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下:
1)初始状态:无序区为R[1.......n],有序区为空;
2)第i趟排序(i = 1,2,3....n-1)开始时,当前有序区和无序区分别为R[1....i-1]和R[i.....n]。该趟排序从当前无序区中选出关键字最小的记录R[k],将它与无序区的第1个记录R交换,使R[1.....i]和R[i+1....n]分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区;
3)n-1趟结束,数组有序化了。
3.2 动图演示
3.3 代码实现
# js代码 1 function selectionSort(arr){ 2 var len = arr.length; 3 var minIndex,temp; 4 for (var i = 0; i < len-1;i++){ 5 minIndex = i; 6 for (var j = i+1; j < len; j++){ 7 if (arr[j] < arr[minIndex]){ //寻找最小的数 8 minIndex = j; //将最小数的索引保存 9 } 10 } 11 temp = arr[i]; 12 arr[i] = arr[minIndex]; 13 arr[minIndex] = temp; 14 } 15 return arr; 16 } # c语言代码 void select_sort(int*a,int n) { register int i,j,min,t; for(i=0;i<n-1;i++) { min=i;//查找最小值 for(j=i+1;j<n;j++) if(a[min]>a[j]) min=j;//交换 if(min!=i) { t=a[min]; a[min]=a[i]; a[i]=t; } } }
# python代码
def selection_sort(lst):
for i in range(0, len(lst) - 1):
min_index = i
for j in range(i + 1, len(lst)):
if lst[j] < lst[min_index]:
min_index = j
lst[i], lst[min_index] = lst[min_index], lst[i]
4、插入排序(Insertion Sort)
插入排序(Insertion sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
4.1 算法描述
一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:
a、从第一个元素开始,该元素可以认为已经被排序;
b、取出下一个元素,在已经排序的元素序列中从后向前扫描;
c、如果该元素(已排序)大于新元素,将该元素移到下一位置;
d、重复步骤3,直到找到已排序的元素小于或等于新元素的位置;
e、将新元素插入到该位置后;
f、重复步骤2~5.
4.2 动图演示
4.3 代码实现
js代码
1 function insertionSort(arr){
2 var len = arr.length;
3 var preIndex, current;
4 for (var i = 1; i < len; i++){
5 preIndex = i-1;
6 current = arr[i];
7 while (preIndex >= 0 && arr[preIndex] > current){
8 arr[preIndex + 1] = arr[preIndex];
9 preIndex--;
10 }
11 arr[preIndex + 1] = current;
12 }
13 return arr;
14 }
# c语言 void insert_sort(int *array,unsigned int n) { int i,j; int temp; for(i=1;i<n;i++) { temp=*(array+i); for(j=i;j>0&&*(array+j-1)>temp;j--) { *(array+j)=*(array+j-1); } *(array+j)=temp; } }
# python def insert_sort(mylist): for i in range(1, len(mylist)): # 默认第一个数已经在有序序列中 for j in range(i, 0, -1): if mylist[j] < mylist[j - 1]: mylist[j], mylist[j - 1] = mylist[j - 1], mylist[j]
4.4 算法分析
插入排序在实现上,通常采用in-place排序(即只需要用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
5、希尔排序(Shell Sort)
1959年Shell发明,第一个突破O(n2)的排序算法,是简单插入排序的改进版。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序。
5.1 算法描述
先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:
- 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
- 按增量序列个数k,对序列进行k 趟排序;
- 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
5.2 动图演示
5.3 代码实现
# js代码 function shellSort(arr) { var len = arr.length, temp, gap = 1; while (gap < len / 3) { // 动态定义间隔序列 gap = gap * 3 + 1; } for (gap; gap > 0; gap = Math.floor(gap / 3)) { for (var i = gap; i < len; i++) { temp = arr[i]; for (var j = i-gap; j > 0 && arr[j]> temp; j-=gap) { arr[j + gap] = arr[j]; } arr[j + gap] = temp; } } return arr; } # c语言 void main() { void shellSort(int array[],int n,int t);//t为排序趟数 int array[MAXNUM],i; for(i=0;i<MAXNUM;i++) scanf("%d",&array[i]); shellSort(array,MAXNUM,(int)(log(MAXNUM+1)/log(2)));//排序趟数应为log2(n+1)的整数部分 for(i=0;i<MAXNUM;i++) printf("%d ",array[i]); printf(" "); } //根据当前增量进行插入排序 void shellInsert(int array[],int n,int dk) { int i,j,temp; for(i=dk;i<n;i++)//分别向每组的有序区域插入 { temp=array[i]; for(j=i-dk;(j>=i%dk)&&array[j]>temp;j-=dk)//比较与记录后移同时进行 array[j+dk]=array[j]; if(j!=i-dk) array[j+dk]=temp;//插入 } } //计算Hibbard增量 int dkHibbard(int t,int k) { return (int)(pow(2,t-k+1)-1); } //希尔排序 void shellSort(int array[],int n,int t) { void shellInsert(int array[],int n,int dk); int i; for(i=1;i<=t;i++) shellInsert(array,n,dkHibbard(t,i)); } //此写法便于理解,实际应用时应将上述三个函数写成一个函数。 # python代码 def shell(arr): n = len(arr) h = 1 while h < n / 3: h = 3 * h + 1 while h >= 1: for i in range(h, n): j = i while j >= h and arr[j] < arr[j - h]: arr[j], arr[j - h] = arr[j - h], arr[j] j -= h h = h // 3 print(arr)
5.4 算法分析
希尔排序的核心在于间隔序列的设定。既可以提前设定好间隔序列,也可以动态的定义间隔序列。动态定义间隔序列的算法是《算法(第4版)》的合著者Robert Sedgewick提出的。
6、归并排序(Merge Sort)
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。
6.1 算法描述
- 把长度为n的输入序列分成两个长度为n/2的子序列;
- 对这两个子序列分别采用归并排序;
- 将两个排序好的子序列合并成一个最终的排序序列。
6.2 动图演示
6.3 代码实现
# js代码 function merge(left, right){ var result=[]; while(left.length>0 && right.length>0){ if(left[0]<right[0]){ /*shift()方法用于把数组的第一个元素从其中删除,并返回第一个元素的值。*/ result.push(left.shift()); }else{ result.push(right.shift()); } } return result.concat(left).concat(right); } function mergeSort(items){ if(items.length == 1){ return items; } var middle = Math.floor(items.length/2), left = items.slice(0, middle), right = items.slice(middle); return merge(mergeSort(left), mergeSort(right)); } # c语言 void Merge(int sourceArr[],int tempArr[], int startIndex, int midIndex, int endIndex) { int i = startIndex, j=midIndex+1, k = startIndex; while(i!=midIndex+1 && j!=endIndex+1) { if(sourceArr[i] > sourceArr[j]) tempArr[k++] = sourceArr[j++]; else tempArr[k++] = sourceArr[i++]; } while(i != midIndex+1) tempArr[k++] = sourceArr[i++]; while(j != endIndex+1) tempArr[k++] = sourceArr[j++]; for(i=startIndex; i<=endIndex; i++) sourceArr[i] = tempArr[i]; } //内部使用递归 void MergeSort(int sourceArr[], int tempArr[], int startIndex, int endIndex) { int midIndex; if(startIndex < endIndex) { midIndex = startIndex + (endIndex-startIndex) / 2;//避免溢出int MergeSort(sourceArr, tempArr, startIndex, midIndex); MergeSort(sourceArr, tempArr, midIndex+1, endIndex); Merge(sourceArr, tempArr, startIndex, midIndex, endIndex); } } int main(int argc, char * argv[]) { int a[8] = {50, 10, 20, 30, 70, 40, 80, 60}; int i, b[8]; MergeSort(a, b, 0, 7); for(i=0; i<8; i++) printf("%d ", a[i]); printf(" "); return 0; } # python语言 def MergeSort(lst): if len(lst) <= 1: return lst num = int(len(lst) / 2) left = MergeSort(lst[:num]) right = MergeSort(lst[num:]) return Merge(left, right) def Merge(left, right): r, l = 0, 0 result = [] while l < len(left) and r < len(right): if left[l] < right[r]: result.append(left[l]) l += 1 else: result.append(right[r]) r += 1 result += list(left[l:]) result += list(right[r:]) return result
6.4 算法分析
归并排序是一种稳定的排序方法。和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(nlogn)的时间复杂度。代价是需要额外的内存空间。
7、快速排序(Quick Sort)
快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
7.1 算法描述
快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:
- 从数列中挑出一个元素,称为 “基准”(pivot);
- 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
- 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
7.2 动图演示
7.3 代码实现
# c语言 void sort(int *a, int left, int right) { if(left >= right)/*如果左边索引大于或者等于右边的索引就代表已经整理完成一个组了*/ { return ; } int i = left; int j = right; int key = a[left]; while(i < j) /*控制在当组内寻找一遍*/ { while(i < j && key <= a[j]) /*而寻找结束的条件就是,1,找到一个小于或者大于key的数(大于或小于取决于你想升 序还是降序)2,没有符合条件1的,并且i与j的大小没有反转*/ { j--;/*向前寻找*/ } a[i] = a[j]; /*找到一个这样的数后就把它赋给前面的被拿走的i的值(如果第一次循环且key是 a[left],那么就是给key)*/ while(i < j && key >= a[i]) /*这是i在当组内向前寻找,同上,不过注意与key的大小关系停止循环和上面相反, 因为排序思想是把数往两边扔,所以左右两边的数大小与key的关系相反*/ { i++; } a[j] = a[i]; } a[i] = key;/*当在当组内找完一遍以后就把中间数key回归*/ sort(a, left, i - 1);/*最后用同样的方式对分出来的左边的小组进行同上的做法*/ sort(a, i + 1, right);/*用同样的方式对分出来的右边的小组进行同上的做法*/ /*当然最后可能会出现很多分左右,直到每一组的i = j 为止*/ } # js代码 const quickSort = (array) => { const sort = (arr, left = 0, right = arr.length - 1) => { if (left >= right) {//如果左边的索引大于等于右边的索引说明整理完毕 return } let i = left let j = right const baseVal = arr[j] // 取无序数组最后一个数为基准值 while (i < j) {//把所有比基准值小的数放在左边大的数放在右边 while (i < j && arr[i] <= baseVal) { //找到一个比基准值大的数交换 i++ } arr[j] = arr[i] // 将较大的值放在右边如果没有比基准值大的数就是将自己赋值给自己(i 等于 j) while (j > i && arr[j] >= baseVal) { //找到一个比基准值小的数交换 j-- } arr[i] = arr[j] // 将较小的值放在左边如果没有找到比基准值小的数就是将自己赋值给自己(i 等于 j) } arr[j] = baseVal // 将基准值放至中央位置完成一次循环(这时候 j 等于 i ) sort(arr, left, j-1) // 将左边的无序数组重复上面的操作 sort(arr, j+1, right) // 将右边的无序数组重复上面的操作 } const newArr = array.concat() // 为了保证这个函数是纯函数拷贝一次数组 sort(newArr) return newArr } # python代码 def QuickSort(mylist, low, high): # 判断low是否小于high,如果是False直接返回,否则继续执行 if low < high: i, j = low, high # 设置基准数 base = mylist[i] # 快速排序:循环的前提条件 while i < j: # 从后往前找小的,也就是从最后面开始与基准数比较,大于或等于基准数往前移一位 while (i < j) and (mylist[j] >= base): j -= 1 # 若从后往前找到比基准数小的数,则交换位置 mylist[i] = mylist[j] # 从前往后找大的,也就是从前面开始与基准数比较,小于或等于基准数则往后移一位 while (i < j) and (mylist[i] <= base): i += 1 # 若从前往后找到比基准数大的数,则与目前基准数所在的位置进行交换 mylist[j] = mylist[i] # 到这里表示一趟快排结束,此时列表被分成两个区,并且i=j,需要设置base为定位后的位置 mylist[i] = base # 递归执行前半区 QuickSort(mylist, low, i - 1) # 递归执行后半区 QuickSort(mylist, j + 1, high)
8、堆排序(Heap Sort)
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。
8.1 算法描述
- 将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
- 将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
- 由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。
8.2 动图演示
8.3 代码实现
# c语言代码 #include <stdio.h> #include <stdlib.h> void swap(int* a, int* b) { int temp = *b; *b = *a; *a = temp; } void max_heapify(int arr[], int start, int end) { //建立父节点指标和子节点指标 int dad = start; int son = dad * 2 + 1; while (son <= end) { //若子节点指标在范围内才做比较 if (son + 1 <= end && arr[son] < arr[son + 1]) //先比较两个子节点大小,选择最大的 son++; if (arr[dad] > arr[son]) //如果父节点大於子节点代表调整完毕,直接跳出函数 return; else { //否则交换父子内容再继续子节点和孙节点比较 swap(&arr[dad], &arr[son]); dad = son; son = dad * 2 + 1; } } } void heap_sort(int arr[], int len) { int i; //初始化,i从最後一个父节点开始调整 for (i = len / 2 - 1; i >= 0; i--) max_heapify(arr, i, len - 1); //先将第一个元素和已排好元素前一位做交换,再重新调整,直到排序完毕 for (i = len - 1; i > 0; i--) { swap(&arr[0], &arr[i]); max_heapify(arr, 0, i - 1); } } int main() { int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 }; int len = (int) sizeof(arr) / sizeof(*arr); heap_sort(arr, len); int i; for (i = 0; i < len; i++) printf("%d ", arr[i]); printf(" "); return 0; } # python代码 def big_endian(arr, start, end): root = start while True: child = root * 2 + 1 # 左孩子 if child > end: # 孩子比最后一个节点还大 也就意味着最后一个叶子节点了 就得跳出去一次循环已经调整完毕 break if child + 1 <= end and arr[child] < arr[child + 1]: # 为了始终让其跟子元素的较大值比较 如果右边大就左换右,左边大的话就默认 child += 1 if arr[root] < arr[child]: # 父节点小于子节点直接换位置 同时坐标也得换这样下次循环可以准确判断是否为最底层是不是调整完毕 arr[root], arr[child] = arr[child], arr[root] root = child else: # 父子节点顺序正常 直接过 break def heap_sort(arr): # 无序区大根堆排序 first = len(arr) // 2 - 1 for start in range(first, -1, -1): # 从下到上,从右到左对每个节点进调整 循环得到非叶子节点 big_endian(arr, start, len(arr) - 1) # 去调整所有的节点 for end in range(len(arr) - 1, 0, -1): arr[0], arr[end] = arr[end], arr[0] # 顶部尾部互换位置 big_endian(arr, 0, end - 1) # 重新调整子节点的顺序 从顶开始调整 return arr def main(): l = [3, 1, 4, 9, 6, 7, 5, 8, 2, 10] print(heap_sort(l)) # 原地排序 if __name__ == "__main__": main()
9、计数排序(Counting Sort)
计数排序不是基于比较的排序算法,其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。 作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。
9.1 算法描述
- 找出待排序的数组中最大和最小的元素;
- 统计数组中每个值为i的元素出现的次数,存入数组C的第i项;
- 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);
- 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1。
9.2 动图演示
9.3 代码实现
# c语言代码 #include<stdio.h> #include<stdlib.h> #define MAXNUM 10 void main() { void CountSort(int data[],int n); int i,data[MAXNUM]; for(i=0;i<MAXNUM;i++) scanf("%d",&data[i]); CountSort(data,MAXNUM); for(i=0;i<MAXNUM;i++) printf("%d ",data[i]); printf(" "); } void CountSort(int data[],int n) { int i,j,count,*data_p; data_p=(int*)malloc(sizeof(int)*n); for(i=0;i<n;i++)//初始化data_p data_p[i]=0; for(i=0;i<n;i++) { count=0; for(j=0;j<n;j++)//扫描待排序数组 if(data[j]<data[i])//统计比data[i]值小的值的个数 count++; if(data_p[count]!=0)//对于相等非0的数据,应向后措一位。数据为0时,因数组data_p被初始化为0,故不受影响。 count++; data_p[count]=data[i];//存放到data_p中的对应位置 } //用于检查当有多个数相同时的情况 i=0,j=n; while(i<j) { if(data_p[i]==0) { temp=i-1; data_p[i]=data_p[temp]; }//of if i++; }//of while for(i=0;i<n;i++)//把排序完的数据复制到data中 data[i]=data_p[i]; free(data_p);//释放data_p } # python代码 def sort(a): n=len(a) b=[None]*n for i in range(n): p=0 q=0 for j in range(n): if a[j]<a[i]: p+=1 elif a[j]==a[i]: q+=1 for k in range(p,p+q): b[k]=a[i] print b
10、桶排序(Bucket Sort)
桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。桶排序 (Bucket sort)的工作的原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排)。
10.1 算法描述
- 设置一个定量的数组当作空桶;
- 遍历输入数据,并且把数据一个一个放到对应的桶里去;
- 对每个不是空的桶进行排序;
- 从不是空的桶里把排好序的数据拼接起来。
10.2 图片演示
10.3 代码实现
10.4 算法分析
桶排序最好情况下使用线性时间O(n),桶排序的时间复杂度,取决与对各个桶之间数据进行排序的时间复杂度,因为其它部分的时间复杂度都为O(n)。很显然,桶划分的越小,各个桶之间的数据越少,排序所用的时间也会越少。但相应的空间消耗就会增大。
11、基数排序(Radix Sort)
基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。
11.1 算法描述
- 取得数组中的最大数,并取得位数;
- arr为原始数组,从最低位开始取每个位组成radix数组;
- 对radix进行计数排序(利用计数排序适用于小范围数的特点);
11.2 动图演示
11.3 代码实现
# c语言代码 #include<math.h> testBS() { inta[] = {2, 343, 342, 1, 123, 43, 4343, 433, 687, 654, 3}; int *a_p = a; //计算数组长度 intsize = sizeof(a) / sizeof(int); //基数排序 bucketSort3(a_p, size); //打印排序后结果 inti; for(i = 0; i < size; i++) { printf("%d ", a[i]); } intt; scanf("%d", t); } //基数排序 voidbucketSort3(int *p, intn) { //获取数组中的最大数 intmaxNum = findMaxNum(p, n); //获取最大数的位数,次数也是再分配的次数。 intloopTimes = getLoopTimes(maxNum); inti; //对每一位进行桶分配 for(i = 1; i <= loopTimes; i++) { sort2(p, n, i); } } //获取数字的位数 intgetLoopTimes(intnum) { intcount = 1; inttemp = num / 10; while(temp != 0) { count++; temp = temp / 10; } returncount; } //查询数组中的最大数 intfindMaxNum(int *p, intn) { inti; intmax = 0; for(i = 0; i < n; i++) { if(*(p + i) > max) { max = *(p + i); } } returnmax; } //将数字分配到各自的桶中,然后按照桶的顺序输出排序结果 voidsort2(int *p, intn, intloop) { //建立一组桶此处的20是预设的根据实际数情况修改 intbuckets[10][20] = {}; //求桶的index的除数 //如798个位桶index=(798/1)%10=8 //十位桶index=(798/10)%10=9 //百位桶index=(798/100)%10=7 //tempNum为上式中的1、10、100 inttempNum = (int)pow(10, loop - 1); inti, j; for(i = 0; i < n; i++) { introw_index = (*(p + i) / tempNum) % 10; for(j = 0; j < 20; j++) { if(buckets[row_index][j] == NULL) { buckets[row_index][j] = *(p + i); break; } } } //将桶中的数,倒回到原有数组中 intk = 0; for(i = 0; i < 10; i++) { for(j = 0; j < 20; j++) { if(buckets[i][j] != NULL) { *(p + k) = buckets[i][j]; buckets[i][j] = NULL; k++; } } } } # python代码 #!/usr/bin/env python #encoding=utf-8 import math def sort(a, radix=10): """a为整数列表, radix为基数""" K = int(math.ceil(math.log(max(a), radix))) # 用K位数可表示任意整数 bucket = [[] for i in range(radix)] # 不能用 [[]]*radix for i in range(1, K+1): # K次循环 for val in a: bucket[val%(radix**i)/(radix**(i-1))].append(val) # 析取整数第K位数字 (从低到高) del a[:] for each in bucket: a.extend(each) # 桶合并 bucket = [[] for i in range(radix)]
11.4 算法分析
基数排序基于分别排序,分别收集,所以是稳定的。但基数排序的性能比桶排序要略差,每一次关键字的桶分配都需要O(n)的时间复杂度,而且分配之后得到新的关键字序列又需要O(n)的时间复杂度。假如待排数据可以分为d个关键字,则基数排序的时间复杂度将是O(d*2n) ,当然d要远远小于n,因此基本上还是线性级别的。
基数排序的空间复杂度为O(n+k),其中k为桶的数量。一般来说n>>k,因此额外空间需要大概n个左右。