• UVA1411 Ants


    (mathtt{UVA 1411}) (mathtt{Ants})

    (mathcal{Description})

    给定一些黑点白点,要求一个黑点连接一个白点,并且所有线段都不相交。

    (mathcal{Solution})

    首先通过画图可以发现,要使所有线段都不相交可以使距离总和最小。所以题意就转化成为使距离总和最小的连接方式,自然联想到(KM)。我们可以先预处理出每一对白点和黑点之间的距离,因为要求的是最小连接方式,所以可以把距离取反来求最大值,限制条件为(g[i] + b[i] = a[i][j])(a[i][j])是取反后的距离,(g[i])是黑点的期望值,(b[i])是白点的期望值,复杂度为(O(n^3))

    (mathcal{Code})

    #include<bits/stdc++.h>
    using namespace std;
    const int N = 110, INF = 1 << 30, Eps = 1e-9;
    bool tfg[N], tfb[N];
    int match[N], n,cnt ;
    double a1[N], b1[N], a2[N], b2[N], a[N][N], b[N], g[N];
    inline int read() {
    	int x = 0, k = 1; char c = getchar();
    	for (; c < 48 || c > 57; c = getchar()) k ^= (c == '-');
    	for (; c >= 48 && c <= 57; c = getchar()) x = x * 10 + (c ^ 48);
    	return k ? x : -x;
    }
    bool pd(int x) {
    	tfg[x] = true;
    	for (int i = 1; i <= n; i++)
    		if (fabs(g[x] + b[i] - a[x][i]) <  Eps && !tfb[i]) {
    			tfb[i] = true;
    			if (match[i] == -1) {
    				match[i] = x;
    				return true;
    			}
    			if (pd(match[i])) {
    				match[i] = x;
    				return true;
    			}
    		}
    	return false;
    }
    inline void KM() {
    	memset(match, -1, sizeof(match));
    	memset(b, 0.0, sizeof(b));
    	for (int i = 1; i <= n; i++) {
    		g[i] = std::max(0.0, a[i][1]);
    		for (int j = 2; j <= n; j++)
    			g[i] = std::max(g[i], a[i][j]);
    	}
    	for (int i = 1; i <= n; i++) {
    		while (true) {
    			//printf("%d KM
    ",i);
    			memset(tfb, false, sizeof(tfb));
    			memset(tfg, false, sizeof(tfg));    
    			if (pd(i))
    				break;
    			double d = INF;
    			for (int j = 1; j <= n; j++)
    				if (tfg[j])
    					for (int k = 1; k <= n; k++)
    						if (!tfb[k])
    							d = std::min(d, g[j] + b[k] - a[j][k]);
    			// if (cnt<=5) printf("%d %.2lf YES
    ",i,d);
    			for (int j = 1; j <= n; j++) {
    				if (tfg[j])
    					g[j] -= d;
    				if (tfb[j])
    					b[j] += d;
    			}
    			// if (i==1 && cnt<=5) for (int j=1; j<=n; j++) printf("%d %.2lf %.2lf
    ",j,g[j],b[j]);
    			// cnt++;
    		}
    	}
    }
    inline double dist(double x, double y, double xx, double yy) {
    	return sqrt((x - xx) * (x - xx) + (y - yy) * (y - yy));
    }
    int main() {
    	while (scanf("%d", &n) != EOF) {
    		for (int i = 1; i <= n; i++)
    			scanf("%lf%lf", &a1[i], &b1[i]);
    		for (int i = 1; i <= n; i++) 
    			scanf("%lf%lf", &a2[i], &b2[i]);
    		for (int i = 1; i <= n; i++)
    			for (int j = 1; j <= n; j++)
    				a[j][i] = -dist(a1[i], b1[i], a2[j], b2[j]);
    		KM();
    		for (int i = 1; i <= n; i++)
    			printf("%d
    ", match[i]);
    	}
    	return 0;
    }
    
    
  • 相关阅读:
    小白成长建议(7)-蛛丝马迹-云层
    小白成长建议(5) 缺陷与管理-云层
    小白成长建议(6)-测试的灵魂-云层
    小白成长建议(4) -从头开始-云层
    小白成长建议 (3)-看书和选书-云层
    小白成长建议(2)-扎实基础-云层
    创业神人&当时钢铁侠:Elon Musk
    Oracle数据库学习笔记5
    Oracle数据库学习笔记4
    Oracle数据库学习笔记3
  • 原文地址:https://www.cnblogs.com/wjnclln/p/11627394.html
Copyright © 2020-2023  润新知