统计学习精要(The Elements of Statistical Learning)课堂笔记系列
- Posted at January 2nd, 2014
- Filed under
课程教材:The Elements of Statistical Learning http://www-stat.stanford.edu/~tibs/ElemStatLearn/
授课人:复旦大学计算机学院 吴立德教授
分节课堂笔记:
- 统计学习精要(The Elements of Statistical Learning)课堂笔记(一):导论和课程大纲
- 统计学习精要(The Elements of Statistical Learning)课堂笔记(二):简单预测方法,OLS和KNN,统计决策理论
- 统计学习精要(The Elements of Statistical Learning)课堂笔记(三):高维空间问题、线性回归方法
- 统计学习精要(The Elements of Statistical Learning)课堂笔记(四):OLS和高斯马尔可夫定理
- 统计学习精要(The Elements of Statistical Learning)课堂笔记(五):logit和LDA
- 统计学习精要(The Elements of Statistical Learning)课堂笔记(六):logisitic、LDA和perceptional分类器
- 统计学习精要(The Elements of Statistical Learning)课堂笔记(七):B-splines(样条)
- 统计学习精要(The Elements of Statistical Learning)课堂笔记(八):平滑splines、子波分析
- 统计学习精要(The Elements of Statistical Learning)课堂笔记(九):核平滑器与局部方法
- 统计学习精要(The Elements of Statistical Learning)课堂笔记(十):MM、EM和GMM
- 统计学习精要(The Elements of Statistical Learning)课堂笔记(十一):BootStrap、MLE
- 统计学习精要(The Elements of Statistical Learning)课堂笔记(十二):可加模型、树模型
- 统计学习精要(The Elements of Statistical Learning)课堂笔记(十三):MARS、PRIM、HME、基函数模型
- 统计学习精要(The Elements of Statistical Learning)课堂笔记(十四):Boost(AdaBoost)、自适应基函数模型、前向分布算法、指数损失函数
- 统计学习精要(The Elements of Statistical Learning)课堂笔记(十五):梯度树提升算法(GTBA)
- 统计学习精要(The Elements of Statistical Learning)课堂笔记(十六):随机森林(Random Forest)
- 统计学习精要(The Elements of Statistical Learning)课堂笔记(十七):神经网络
- 统计学习精要(The Elements of Statistical Learning)课堂笔记(十八):神经网络
- 统计学习精要(The Elements of Statistical Learning)课堂笔记(十九):SVM
- 统计学习精要(The Elements of Statistical Learning)课堂笔记(二十):SVM
- 统计学习精要(The Elements of Statistical Learning)课堂笔记(二十一):SMO算法
- 统计学习精要(The Elements of Statistical Learning)课堂笔记(二十二):核函数和核方法
- 统计学习精要(The Elements of Statistical Learning)课堂笔记(二十三):原型方法和最近邻KNN
- 统计学习精要(The Elements of Statistical Learning)课堂笔记(二十四):聚类
- 统计学习精要(The Elements of Statistical Learning)课堂笔记(二十五):降维和PCA