• 人工智能


    CNCC 2016 | 人工智能60年浪潮 (原文链接

    Intelligence,智能是指生物一般性的精神能力,其三因素理论:

    • 成分智力 Componential Intelligence:思维和对问题解决所依赖的心理过程,与受教育程度直接相关;
    • 经验智力 Experiential Intelligence:与受教育程度并不直接相关;
    • 情境智力 Contextual Intelligence:情商;

    Artificial Intelligence - AI,人工智能是指由人工制造出来的系统所表现出来的智能,是对人的意识、思维的信息过程的模拟,用于发展人的智能的三个方面。

    Alan Turing - 图灵

    • 计算机科学之父,人工智能之父
    • 由0和1组成的有限状态自动机演算
    • 图灵奖:计算机领域的诺贝尔奖

    AI三大派别

    • 逻辑主义(符号主义)
      1. 符号推理与机器推理
      2. Simon - CMU
    • 连接主义
      1. 神经元网络与机器学习
      2. Minsky Marvin - MIT,连接主义提出者
    • 行为主义
      1. 控制、自适应与进化计算
      2. 维纳 - MIT

    起源:1956 - 达特茅斯会议;

    发展

     第一次浪潮(1956-1976)

    • 符号主义盛行,功能主义占主流,演算推理证明、专家系统、知识工程迅速发展;
    • 在统计方法中引入符号方法进行语义处理 -> 人机交互;
    • 斯坦福大学、卡耐基大学(CMU);

     AI初期预言(1958) - Simon与Newell

    1. 十年内战胜国际象棋冠军
    2. 十年内发现和证明有意义的数学理论
    3. 十年内能谱写优美的乐趣
    4. 十年内能实现大多数的心理学理论

     第二次浪潮(1976-2006)

    • 连接主义盛行,Deep Learning尚未突破;
    • AI神经元网络方法、自组织网络、感知机(Perceptron),BP算法、误差反传网络(Back Propagation Net);

     第三次浪潮(2006 - 至今)

    • 连接主义盛行,基于互联网大数据的Deep Learning取得突破;

    未来

    关于AI的思考,人的知识可以分成四类:

    • We know what we know:可推理可统计; 
    • We know what we don't know:可推理不可统计,举一反三;
    • We don't know what we know:不可推理可统计,模糊识别;
    • We don't know what we don't know:不可推理不可统计,顿悟;

    横向(Learning)是可统计与不可统计,机器学习;纵向(Deep)是可推理证明与不可推理证明,神经网络;

     目前,AI在逻辑、语言文字、图形图像方面做的比较好,空间、音乐与肢体运作方面则马马虎虎,内省、人际以及自然探索方面完全还不行。人工智能-1.0是在可统计可推理部分取得一定成果,人工智能-2.0是在1.0基础上向不可统计不可推理的部分区域推进,其中,利用小样本学习、基于贝叶斯程序学习等的概率学习方法将是下一代AI-2.0的重要方向。

    参考

  • 相关阅读:
    怎么把分页按钮(首页,尾页等)放在表格右下角处?(已解决)
    zabbix单位符号
    容器、可迭代对象、迭代器、生成器之间的关系.
    Zabbix housekeeper processes more than 75% busy
    zabbix 告警信息模板
    zabbix 历史数据和趋势数据
    socket沾包问题
    面向对象--进阶
    面向对象
    列表 元组 字典
  • 原文地址:https://www.cnblogs.com/wjcx-sqh/p/5994794.html
Copyright © 2020-2023  润新知