线性代数学习笔记——第二章(上)
老样子,不放图,本打算一章一篇笔记,但是发现这一章的笔记是真的多,可能是我太菜的缘故,光这篇笔记就花了4个小时,还有:在Typora中^^是上角标,但是博客园有的LaTeX内联属性不支持,导致一些很奇怪的地方。
矩阵概念
- 零矩阵:元素都是0的矩阵(有形状),零矩阵不一定相等。
- 负矩阵:所有元素取相反数,例如:A的负矩阵为-A。
- 实矩阵:所有的元素都是实数的矩阵。
- 复矩阵:所有的元素都是复数的矩阵。
- 行矩阵:只有一行元素的矩阵。
- 列矩阵:只有一列元素的矩阵。
- 单位阵:主对角线上为1,其余元素全为0的方阵,记做:E或I。
- 同型矩阵:行数和列数对应相等。
- 行矩阵知识方阵的一个属性。
- 矩阵相等:同型矩阵且值对应相等。
- 不是方阵没有主对角线和次对角线。
矩阵运算
-
只有同型矩阵才能相加减:对应元素相加减。
- 运算规律(均为同型矩阵):
- A+B=B+A;
- (A+B)+C = A+(B+C);
- A+O = A;
- A+(-A) = O;
- A+B = C —> A = C-B;
- 运算规律(均为同型矩阵):
-
矩阵乘法:
-
用k乘以矩阵,相当于k乘以矩阵的所有元素。
-
矩阵相乘的规则:
- 前提:左矩阵列数=右矩阵行数。
- 结果矩阵:行数=左矩阵行数;列数=右矩阵列数。
- 宋氏七字口诀:中间相等,取两头。
- 用第一个矩阵的第一行乘第二个矩阵的第一列,对应的元素相乘再相加,放置在第一行第一列。
- 用第一个矩阵的第一行乘以第二个矩阵的第二列,对应的元素相乘再相加,放置在第一行第二列。
- 同理……
-
运算法则:
-
k(AB) = (kA)B+ A(kB);
- (A+B)C = AC + BC;
- (AB)C= A(BC);
- AE=A;EA=A;这里的单位矩阵E的形状可能不同。
-
不满足的规律:
- 多数情况下:AB ( eq) BA;
- AB=0 ( rightarrow) A=0 或者 B=0;
- AB=AC,A ( eq) 0 ( rightarrow) B=C;
-
-
一个矩阵可以交换,必要条件就是该矩阵和其所有交换矩阵必须都是同阶方阵。
-
矩阵运算的一些公式:
-
A0=E
-
(Ak1)k2=Ak1k2
-
Ak1*Ak2=A(k1+k2)
-
(AB)k
-
一般情况下:(AB)k( eq)AkBk
- eg: (AB)2=ABAB;A2B2=AABB;
-
但是:(A(pm)E)2=A2 (pm) 2AE+E2
-
- 矩阵转置:AT:
- (AT)T=A
- (A+B)T=AT+BT
- (kA)T=kAT
- (AB)T=BTAT (这里注意顺序须要颠倒)
特殊矩阵
-
数量矩阵:主对角线元素全部相等,其余元素为零。
-
对角线矩阵:主对角线上有值,其余为零。对角型矩阵可以以diag(……)的方式来写。
-
三角矩阵:上三角矩阵、下三角矩阵。
-
对称矩阵:主对角线为轴,上下元素对应相等的矩阵。
-
所有的对称矩阵基本会用到AT=A的公式。
-
A、B对称,A、B可交换
-
eg:(AB)T=AB
-
充分性:(AB)T= BTAT=BA=AB
-
必要性:A和B可以交换,所以AB=BA,所以(AB)T=AB,所以AB是对称矩阵。
- eg:(AAT)T=(AT)TAT=AAT,所以AAT是对称矩阵。
-
-
-
反对称矩阵:主对角线元素全部为零,上下元素对应成相反数的矩阵。
- eg:aij =-aji,对于主对角线上的元素,移项,(Rightarrow) aii =0;
- AT= - A.
-
对于(反)对称矩阵,两个同阶(反)对称矩阵的和、差和数乘仍然是(反)对称矩阵,但是两个(反)对称矩阵的乘积一般不再是(反)对称矩阵。
逆矩阵
-
不要把矩阵放到分母的位置
-
方阵的行列式:
-
方阵A的行列式为:|A|。
-
行列式为一个数,矩阵为一个数表,因此,方阵的行列式仅仅为方阵的一个属性。
-
性质:
-
|AT| = |A|
-
|kA| = kn|A|
-
|AB| = |A||B|,AB为同阶
-
例题:A为5阶方阵,|A| = 3,求|-A|、||||A|A|A|A|。
1)、|-A|=(-1)5|A|=-3。
2)、||||A|A|A|A|=|||3A|A|A| = ||36A|A| = |(36)5|A|A| = |(331)A| = 3155|A|=3156。
-
-
-
伴随矩阵:
- 只有方阵才有伴随矩阵A*,同时任何方阵都有伴随矩阵,如果只有一个元素的矩阵,那么他的伴随矩阵为E或者[1]。
- 伴随矩阵是所有元素的代数余子式按列放构成的矩阵。
- 口诀:按行求,按列放。
-
逆矩阵的定义:
- 设A是一个n阶方阵,如果存在同阶方阵B,使得AB=BA=E,那么B就叫A的逆矩阵,记作:A-1=B。(切记不可写成(frac{1}{A}))。
- 未必所有方阵都可逆,比如零矩阵。
- 可逆矩阵的方阵的逆矩阵唯一。
- AA-1=A-1A=E。
-
方阵可逆的条件:
-
若方阵A的行列式∣A∣≠0,该方阵叫做非奇异(非退化、满秩)矩阵;反之,若方阵A的行列式∣A∣=0,该方阵叫做奇异(退化、降秩)矩阵。
-
矩阵A可逆的充分必要条件为:∣A∣≠0。
-
A-1=(frac{1}{|A|})A*(前提是上一步成立)。
-
若A、B都为n阶方阵,∣A∣≠0且AB=E或者BA=E,则A可逆,并且A-1=B。
-
-
求逆矩阵常用初等变换法,很少使用伴随矩阵法。
-
矩阵方程:
- 注意提取公因子的方向;
- 矩阵不能加减一个数,需要补上单位矩阵E;
- 永远不要把矩阵放在分母上;
- 一定先判断行列式不等于零,矩阵才可逆,再求逆矩阵;
- 求逆矩阵时,待定法(假设法)过于复杂,不建议使用;
-
逆矩阵的性质;
-
若A可逆,则A-1可逆,且(A-1)-1=A;
-
A、B都可逆,则AB可逆,(AB)-1=B-1A-1;
-
A可逆,因此:AT也可逆,并且(A-1)T=(AT)-1;若k ( eq) 0,(kA)-1=(frac{1}{k})A-1;
-
|A-1|=|A|-1;
-
A可逆时,A*也可逆,并且(A*)-1=(frac{1}{|A|})A;
-
-
伴随矩阵的常用公式:
- A*A=AA*=|A|E。
- |A*|=|A|n-1。
- 因为A−1=(frac{1}{∣A∣})A∗,所以∣A∣A−1=A∗,即A∗=∣A∣A−1;
- (A*)*=|A*|(A*)-1=|A|n-1(frac{1}{|A|})A=|A|n-2A;
- ((A*)*)*=|A*|n-2A*=(|A|n-1)n-2|A|A-1=|A|n*n-3n+3A-1;