• Python中OpenCV2. VS. CV1


    OpenCV的2.4.7.版本生成了python的CV2模块,可以直接载入;

    有兴趣的可以参考这个教程:http://blog.csdn.net/sunny2038/article/details/9080047  不过可惜的是,这个教程只是针对CV2 的;

    Tips1: 关于两种载入方法的区别:

    import numpy as np
    import cv2 as cv2
    Vs.
    import cv2.cv as cv 

    (一):引入CV2使用:

    第一种方法的cv函数使用方法几乎等同于matlab,其中可以使用的函数范围也较少;

    例如:利用help(cv2)命令;

    查看函数列表如下:

    ANN_MLP([layerSizes[, activateFunc[, fparam1[, fparam2]]]]) -> <ANN_MLP object>
     Algorithm__create(name) -> retval
     Algorithm_getList() -> algorithms
     BFMatcher([, normType[, crossCheck]]) -> <BFMatcher object>
     BRISK([, thresh[, octaves[, patternScale]]]) -> <BRISK object>  or  BRISK(radiusList, numberList[, dMax[, dMin[, indexChange]]]) -> <BRISK object>
     BackgroundSubtractorMOG([history, nmixtures, backgroundRatio[, noiseSigma]]) -> <BackgroundSubtractorMOG object>
     Boost([trainData, tflag, responses[, varIdx[, sampleIdx[, varType[, missingDataMask[, params]]]]]]) -> <Boost object>
     CamShift(probImage, window, criteria) -> retval, window
     Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient]]]) -> edges
     CascadeClassifier([filename]) -> <CascadeClassifier object>
     DMatch() -> <DMatch object>  or  DMatch(_queryIdx, _trainIdx, _distance) -> <DMatch object>  or  DMatch(_queryIdx, _trainIdx, _imgIdx, _distance) -> <DMatch object>
     DTree() -> <DTree object>
    DescriptorExtractor_create(descriptorExtractorType) -> retval
     DescriptorMatcher_create(descriptorMatcherType) -> retval
     EM([, nclusters[, covMatType[, termCrit]]]) -> <EM object>
     ERTrees() -> <ERTrees object>
     FastFeatureDetector([, threshold[, nonmaxSuppression]]) -> <FastFeatureDetector object>
    Feature2D_create(name) -> retval
     FeatureDetector_create(detectorType) -> retval
     FileNode() -> <FileNode object>
    FileStorage([source, flags[, encoding]]) -> <FileStorage object>
     FlannBasedMatcher([, indexParams[, searchParams]]) -> <FlannBasedMatcher object>
     GBTrees([trainData, tflag, responses[, varIdx[, sampleIdx[, varType[, missingDataMask[, params]]]]]]) -> <GBTrees object>
     GFTTDetector([, maxCorners[, qualityLevel[, minDistance[, blockSize[, useHarrisDetector[, k]]]]]]) -> <GFTTDetector object>
     GaussianBlur(src, ksize, sigmaX[, dst[, sigmaY[, borderType]]]) -> dst
     GridAdaptedFeatureDetector([, detector[, maxTotalKeypoints[, gridRows[, gridCols]]]]) -> <GridAdaptedFeatureDetector object>
    
     HOGDescriptor() -> <HOGDescriptor object>  or  HOGDescriptor(_winSize, _blockSize, _blockStride, _cellSize, _nbins[, _derivAperture[, _winSigma[, _histogramNormType[, _L2HysThreshold[, _gammaCorrection[, _nlevels]]]]]]) -> <HOGDescriptor object>  or  HOGDescriptor(filename) -> <HOGDescriptor object>
        
     HOGDescriptor_getDaimlerPeopleDetector() -> retval
     HOGDescriptor_getDefaultPeopleDetector() -> retval
     HoughCircles(image, method, dp, minDist[, circles[, param1[, param2[, minRadius[, maxRadius]]]]]) -> circles
     HoughLines(image, rho, theta, threshold[, lines[, srn[, stn]]]) -> lines
     HoughLinesP(image, rho, theta, threshold[, lines[, minLineLength[, maxLineGap]]]) -> lines
     HuMoments(m[, hu]) -> hu
        
    KDTree() -> <KDTree object>  or  KDTree(points[, copyAndReorderPoints]) -> <KDTree object>  or  KDTree(points, _labels[, copyAndReorderPoints]) -> <KDTree object> KNearest([trainData, responses[, sampleIdx[, isRegression[, max_k]]]]) -> <KNearest object>
    KalmanFilter([dynamParams, measureParams[, controlParams[, type]]]) -> <KalmanFilter object>
    KeyPoint([x, y, _size[, _angle[, _response[, _octave[, _class_id]]]]]) -> <KeyPoint object>
    LUT(src, lut[, dst[, interpolation]]) -> dst
    Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]]) -> dst
    
    MSER([, _delta[, _min_area[, _max_area[, _max_variation[, _min_diversity[, _max_evolution[, _area_threshold[, _min_margin[, _edge_blur_size]]]]]]]]]) -> <MSER object>
        
     Mahalanobis(v1, v2, icovar) -> retval
     NormalBayesClassifier([trainData, responses[, varIdx[, sampleIdx]]]) -> <NormalBayesClassifier object>
     ORB([, nfeatures[, scaleFactor[, nlevels[, edgeThreshold[, firstLevel[, WTA_K[, scoreType[, patchSize]]]]]]]]) -> <ORB object>
     PCABackProject(data, mean, eigenvectors[, result]) -> result
     PCACompute(data[, mean[, eigenvectors[, maxComponents]]]) -> mean, eigenvectors
     PCAComputeVar(data, retainedVariance[, mean[, eigenvectors]]) -> mean, eigenvectors
     PCAProject(data, mean, eigenvectors[, result]) -> result
        
     PSNR(src1, src2) -> retval
     PyramidAdaptedFeatureDetector(detector[, maxLevel]) -> <PyramidAdaptedFeatureDetector object>
     RQDecomp3x3(src[, mtxR[, mtxQ[, Qx[, Qy[, Qz]]]]]) -> retval, mtxR, mtxQ, Qx, Qy, Qz
     RTrees() -> <RTrees object>
     Rodrigues(src[, dst[, jacobian]]) -> dst, jacobian
     SIFT([, nfeatures[, nOctaveLayers[, contrastThreshold[, edgeThreshold[, sigma]]]]]) -> <SIFT object>
    SURF([hessianThreshold[, nOctaves[, nOctaveLayers[, extended[, upright]]]]]) -> <SURF object>
     SVBackSubst(w, u, vt, rhs[, dst]) -> dst
     SVDecomp(src[, w[, u[, vt[, flags]]]]) -> w, u, vt
    SVM([trainData, responses[, varIdx[, sampleIdx[, params]]]]) -> <SVM object>
        
     Scharr(src, ddepth, dx, dy[, dst[, scale[, delta[, borderType]]]]) -> dst
     SimpleBlobDetector([, parameters]) -> <SimpleBlobDetector object>
    SimpleBlobDetector_Params() -> <SimpleBlobDetector_Params object>
     Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]]) -> dst
     StarDetector([, _maxSize[, _responseThreshold[, _lineThresholdProjected[, _lineThresholdBinarized[, _suppressNonmaxSize]]]]]) -> <StarDetector object>
     
    StereoBM([preset[, ndisparities[, SADWindowSize]]]) -> <StereoBM object>
    StereoSGBM([minDisparity, numDisparities, SADWindowSize[, P1[, P2[, disp12MaxDiff[, preFilterCap[, uniquenessRatio[, speckleWindowSize[, speckleRange[, fullDP]]]]]]]]]) -> <StereoSGBM object>
    StereoVar([levels, pyrScale, nIt, minDisp, maxDisp, poly_n, poly_sigma, fi, lambda, penalization, cycle, flags]) -> <StereoVar object>
        
     Subdiv2D([rect]) -> <Subdiv2D object>
     VideoCapture() -> <VideoCapture object>  or  VideoCapture(filename) -> <VideoCapture object>  or  VideoCapture(device) -> <VideoCapture object>
     VideoWriter([filename, fourcc, fps, frameSize[, isColor]]) -> <VideoWriter object>
    
    absdiff(src1, src2[, dst]) -> dst
    accumulate(src, dst[, mask]) -> None
    accumulateProduct(src1, src2, dst[, mask]) -> None
    accumulateSquare(src, dst[, mask]) -> None
    accumulateWeighted(src, dst, alpha[, mask]) -> None
    adaptiveBilateralFilter(src, ksize, sigmaSpace[, dst[, maxSigmaColor[, anchor[, borderType]]]]) -> dst
    adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C[, dst]) -> dst
    add(src1, src2[, dst[, mask[, dtype]]]) -> dst
    addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype]]) -> dst
    applyColorMap(src, colormap[, dst]) -> dst
        
     approxPolyDP(curve, epsilon, closed[, approxCurve]) -> approxCurve
    arcLength(curve, closed) -> retval
    batchDistance(src1, src2, dtype[, dist[, nidx[, normType[, K[, mask[, update[, crosscheck]]]]]]]) -> dist, nidx
    bilateralFilter(src, d, sigmaColor, sigmaSpace[, dst[, borderType]]) -> dst
    bitwise_and(src1, src2[, dst[, mask]]) -> dst
    bitwise_not(src[, dst[, mask]]) -> dst
    bitwise_or(src1, src2[, dst[, mask]]) -> dst
    bitwise_xor(src1, src2[, dst[, mask]]) -> dst
    
    blur(src, ksize[, dst[, anchor[, borderType]]]) -> dst
    borderInterpolate(p, len, borderType) -> retval
    boundingRect(points) -> retval
    boxFilter(src, ddepth, ksize[, dst[, anchor[, normalize[, borderType]]]]) -> dst
    buildOpticalFlowPyramid(img, winSize, maxLevel[, pyramid[, withDerivatives[, pyrBorder[, derivBorder[, tryReuseInputImage]]]]]) -> retval, pyramid
    
    calcBackProject(images, channels, hist, ranges, scale[, dst]) -> dst
    calcCovarMatrix(samples, flags[, covar[, mean[, ctype]]]) -> covar, mean
    calcGlobalOrientation(orientation, mask, mhi, timestamp, duration) -> retval
    calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]]) -> hist
    calcMotionGradient(mhi, delta1, delta2[, mask[, orientation[, apertureSize]]]) -> mask, orientation
    calcOpticalFlowFarneback(prev, next, pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, flags[, flow]) -> flow
    calcOpticalFlowPyrLK(prevImg, nextImg, prevPts[, nextPts[, status[, err[, winSize[, maxLevel[, criteria[, flags[, minEigThreshold]]]]]]]]) -> nextPts, status, err
    calcOpticalFlowSF(from, to, flow, layers, averaging_block_size, max_flow) -> None  or  calcOpticalFlowSF(from, to, flow, layers, averaging_block_size, max_flow,
    
    sigma_dist, sigma_color, postprocess_window, sigma_dist_fix, sigma_color_fix, occ_thr, upscale_averaging_radius, upscale_sigma_dist, upscale_sigma_color, speed_up_thr) -> None
        
     calibrateCamera(objectPoints, imagePoints, imageSize[, cameraMatrix[, distCoeffs[, rvecs[, tvecs[, flags[, criteria]]]]]]) -> retval, cameraMatrix, distCoeffs, rvecs, tvecs
    calibrationMatrixValues(cameraMatrix, imageSize, apertureWidth, apertureHeight) -> fovx, fovy, focalLength, principalPoint, aspectRatio
    cartToPolar(x, y[, magnitude[, angle[, angleInDegrees]]]) -> magnitude, angle
    
    chamerMatching(img, templ[, templScale[, maxMatches[, minMatchDistance[, padX[, padY[, scales[, minScale[, maxScale[, orientationWeight[, truncate]]]]]]]]]]) -> retval, results, cost
        
    checkHardwareSupport(feature) -> retval
    checkRange(a[, quiet[, minVal[, maxVal]]]) -> retval, pos
    circle(img, center, radius, color[, thickness[, lineType[, shift]]]) -> None
    clipLine(imgRect, pt1, pt2) -> retval, pt1, pt2
    compare(src1, src2, cmpop[, dst]) -> dst
    compareHist(H1, H2, method) -> retval
    completeSymm(mtx[, lowerToUpper]) -> None
    composeRT(rvec1, tvec1, rvec2, tvec2[, rvec3[, tvec3[, dr3dr1[, dr3dt1[, dr3dr2[, dr3dt2[, dt3dr1[, dt3dt1[, dt3dr2[, dt3dt2]]]]]]]]]]) -> rvec3, tvec3, dr3dr1, dr3dt1, dr3dr2, dr3dt2, dt3dr1, dt3dt1, dt3dr2, dt3dt2
    
    computeCorrespondEpilines(points, whichImage, F[, lines]) -> lines
    contourArea(contour[, oriented]) -> retval
    convertMaps(map1, map2, dstmap1type[, dstmap1[, dstmap2[, nninterpolation]]]) -> dstmap1, dstmap2
    convertPointsFromHomogeneous(src[, dst]) -> dst
    convertPointsToHomogeneous(src[, dst]) -> dst
    convertScaleAbs(src[, dst[, alpha[, beta]]]) -> dst
        
    convexHull(points[, hull[, clockwise[, returnPoints]]]) -> hull
    convexityDefects(contour, convexhull[, convexityDefects]) -> convexityDefects
    copyMakeBorder(src, top, bottom, left, right, borderType[, dst[, value]]) -> dst
    cornerEigenValsAndVecs(src, blockSize, ksize[, dst[, borderType]]) -> dst
    cornerHarris(src, blockSize, ksize, k[, dst[, borderType]]) -> dst
    cornerMinEigenVal(src, blockSize[, dst[, ksize[, borderType]]]) -> dst
        
    cornerSubPix(image, corners, winSize, zeroZone, criteria) -> None
    correctMatches(F, points1, points2[, newPoints1[, newPoints2]]) -> newPoints1, newPoints2
    countNonZero(src) -> retval
        
    createCLAHE([, clipLimit[, tileGridSize]]) -> retval
    createEigenFaceRecognizer([, num_components[, threshold]]) -> retval
    createFisherFaceRecognizer([, num_components[, threshold]]) -> retval
    createHanningWindow(winSize, type[, dst]) -> dst
    createLBPHFaceRecognizer([, radius[, neighbors[, grid_x[, grid_y[, threshold]]]]]) -> retval
        
    createTrackbar(trackbarName, windowName, value, count, onChange) -> None
    cubeRoot(val) -> retval
    cvtColor(src, code[, dst[, dstCn]]) -> dst
    dct(src[, dst[, flags]]) -> dst
        
    decomposeProjectionMatrix(projMatrix[, cameraMatrix[, rotMatrix[, transVect[, rotMatrixX[, rotMatrixY[, rotMatrixZ[, eulerAngles]]]]]]]) -> cameraMatrix, rotMatrix, transVect, rotMatrixX, rotMatrixY, rotMatrixZ, eulerAngles
        
    destroyAllWindows() -> None
    destroyWindow(winname) -> None
    determinant(mtx) -> retval
        
    dft(src[, dst[, flags[, nonzeroRows]]]) -> dst
    dilate(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst
    distanceTransform(src, distanceType, maskSize[, dst]) -> dst
    distanceTransformWithLabels(src, distanceType, maskSize[, dst[, labels[, labelType]]]) -> dst, labels
    divide(src1, src2[, dst[, scale[, dtype]]]) -> dst  or  divide(scale, src2[, dst[, dtype]]) -> dst
    drawChessboardCorners(image, patternSize, corners, patternWasFound) -> None
    drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset]]]]]) -> None
        
    drawDataMatrixCodes(image, codes, corners) -> None
    drawKeypoints(image, keypoints[, outImage[, color[, flags]]]) -> outImage
    eigen(src, computeEigenvectors[, eigenvalues[, eigenvectors]]) -> retval, eigenvalues, eigenvectors
    ellipse(img, center, axes, angle, startAngle, endAngle, color[, thickness[, lineType[, shift]]]) -> None  or  ellipse(img, box, color[, thickness[, lineType]]) -> None
    ellipse2Poly(center, axes, angle, arcStart, arcEnd, delta) -> pts
    equalizeHist(src[, dst]) -> dst
    
    
    erode(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst
    estimateAffine3D(src, dst[, out[, inliers[, ransacThreshold[, confidence]]]]) -> retval, out, inliers
    estimateRigidTransform(src, dst, fullAffine) -> retval
    exp(src[, dst]) -> dst
    extractChannel(src, coi[, dst]) -> dst
    fastAtan2(y, x) -> retval
    
    
    fastNlMeansDenoising(src[, dst[, h[, templateWindowSize[, searchWindowSize]]]]) -> dst
    fastNlMeansDenoisingColored(src[, dst[, h[, hColor[, templateWindowSize[, searchWindowSize]]]]]) -> dst
    fastNlMeansDenoisingColoredMulti(srcImgs, imgToDenoiseIndex, temporalWindowSize[, dst[, h[, hColor[, templateWindowSize[, searchWindowSize]]]]]) -> dst
    fastNlMeansDenoisingMulti(srcImgs, imgToDenoiseIndex, temporalWindowSize[, dst[, h[, templateWindowSize[, searchWindowSize]]]]) -> dst
    fillConvexPoly(img, points, color[, lineType[, shift]]) -> None
    fillPoly(img, pts, color[, lineType[, shift[, offset]]]) -> None
        
    filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]]) -> dst
    filterSpeckles(img, newVal, maxSpeckleSize, maxDiff[, buf]) -> None
    findChessboardCorners(image, patternSize[, corners[, flags]]) -> retval, corners
    findCirclesGrid(image, patternSize[, centers[, flags[, blobDetector]]]) -> retval, centers
    findCirclesGridDefault(image, patternSize[, centers[, flags]]) -> retval, centers
    findContours(image, mode, method[, contours[, hierarchy[, offset]]]) -> contours, hierarchy
        
    findDataMatrix(image[, corners[, dmtx]]) -> codes, corners, dmtx
    findFundamentalMat(points1, points2[, method[, param1[, param2[, mask]]]]) -> retval, mask
    findHomography(srcPoints, dstPoints[, method[, ransacReprojThreshold[, mask]]]) -> retval, mask
    findNonZero(src[, idx]) -> idx
    fitEllipse(points) -> retval
    fitLine(points, distType, param, reps, aeps[, line]) -> line
        
    flann_Index([features, params[, distType]]) -> <flann_Index object>
    flip(src, flipCode[, dst]) -> dst
    floodFill(image, mask, seedPoint, newVal[, loDiff[, upDiff[, flags]]]) -> retval, rect
    gemm(src1, src2, alpha, src3, gamma[, dst[, flags]]) -> dst
    getAffineTransform(src, dst) -> retval
    getBuildInformation() -> retval
    getCPUTickCount() -> retval
    getDefaultNewCameraMatrix(cameraMatrix[, imgsize[, centerPrincipalPoint]]) -> retval
        
    getDerivKernels(dx, dy, ksize[, kx[, ky[, normalize[, ktype]]]]) -> kx, ky
    getGaborKernel(ksize, sigma, theta, lambd, gamma[, psi[, ktype]]) -> retval
    getGaussianKernel(ksize, sigma[, ktype]) -> retval
    getNumberOfCPUs() -> retval
    getOptimalDFTSize(vecsize) -> retval
    getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, alpha[, newImgSize[, centerPrincipalPoint]]) -> retval, validPixROI
    getPerspectiveTransform(src, dst) -> retval
    getRectSubPix(image, patchSize, center[, patch[, patchType]]) -> patch
        
    getRotationMatrix2D(center, angle, scale) -> retval
    getStructuringElement(shape, ksize[, anchor]) -> retval
    getTextSize(text, fontFace, fontScale, thickness) -> retval, baseLine
    getTickCount() -> retval
    getTickFrequency() -> retval
    getTrackbarPos(trackbarname, winname) -> retval
    getValidDisparityROI(roi1, roi2, minDisparity, numberOfDisparities, SADWindowSize) -> retval
    getWindowProperty(winname, prop_id) -> retval
        
    goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistance[, corners[, mask[, blockSize[, useHarrisDetector[, k]]]]]) -> corners
    grabCut(img, mask, rect, bgdModel, fgdModel, iterCount[, mode]) -> None
    groupRectangles(rectList, groupThreshold[, eps]) -> rectList, weights
    hconcat(src[, dst]) -> dst
        
    idct(src[, dst[, flags]]) -> dst
    idft(src[, dst[, flags[, nonzeroRows]]]) -> dst
    imdecode(buf, flags) -> retval
    imencode(ext, img[, params]) -> retval, buf
        
    imread(filename[, flags]) -> retval
    imshow(winname, mat) -> None
    imwrite(filename, img[, params]) -> retval
    inRange(src, lowerb, upperb[, dst]) -> dst
    initCameraMatrix2D(objectPoints, imagePoints, imageSize[, aspectRatio]) -> retval
    initModule_nonfree() -> retval
    initUndistortRectifyMap(cameraMatrix, distCoeffs, R, newCameraMatrix, size, m1type[, map1[, map2]]) -> map1, map2
    initWideAngleProjMap(cameraMatrix, distCoeffs, imageSize, destImageWidth, m1type[, map1[, map2[, projType[, alpha]]]]) -> retval, map1, map2
        
    inpaint(src, inpaintMask, inpaintRadius, flags[, dst]) -> dst
    insertChannel(src, dst, coi) -> None
    integral(src[, sum[, sdepth]]) -> sum
    integral2(src[, sum[, sqsum[, sdepth]]]) -> sum, sqsum
    integral3(src[, sum[, sqsum[, tilted[, sdepth]]]]) -> sum, sqsum, tilted
        
    intersectConvexConvex(_p1, _p2[, _p12[, handleNested]]) -> retval, _p12
    invert(src[, dst[, flags]]) -> retval, dst
    invertAffineTransform(M[, iM]) -> iM
    isContourConvex(contour) -> retval
        
    kmeans(data, K, criteria, attempts, flags[, bestLabels[, centers]]) -> retval, bestLabels, centers
    line(img, pt1, pt2, color[, thickness[, lineType[, shift]]]) -> None
    log(src[, dst]) -> dst
    magnitude(x, y[, magnitude]) -> magnitude
    matMulDeriv(A, B[, dABdA[, dABdB]]) -> dABdA, dABdB
        
    matchShapes(contour1, contour2, method, parameter) -> retval
    matchTemplate(image, templ, method[, result]) -> result
    max(src1, src2[, dst]) -> dst
    mean(src[, mask]) -> retval
    meanShift(probImage, window, criteria) -> retval, window
    meanStdDev(src[, mean[, stddev[, mask]]]) -> mean, stddev
    medianBlur(src, ksize[, dst]) -> dst
        
    merge(mv[, dst]) -> dst
    min(src1, src2[, dst]) -> dst
    minAreaRect(points) -> retval
    minEnclosingCircle(points) -> center, radius
    minMaxLoc(src[, mask]) -> minVal, maxVal, minLoc, maxLoc
    mixChannels(src, dst, fromTo) -> None
        
    moments(array[, binaryImage]) -> retval
    morphologyEx(src, op, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst
    moveWindow(winname, x, y) -> None
    mulSpectrums(a, b, flags[, c[, conjB]]) -> c
    mulTransposed(src, aTa[, dst[, delta[, scale[, dtype]]]]) -> dst
    multiply(src1, src2[, dst[, scale[, dtype]]]) -> dst
    namedWindow(winname[, flags]) -> None
        
    norm(src1[, normType[, mask]]) -> retval  or  norm(src1, src2[, normType[, mask]]) -> retval
    normalize(src[, dst[, alpha[, beta[, norm_type[, dtype[, mask]]]]]]) -> dst
    patchNaNs(a[, val]) -> None
    perspectiveTransform(src, m[, dst]) -> dst
    phase(x, y[, angle[, angleInDegrees]]) -> angle
    phaseCorrelate(src1, src2[, window]) -> retval
    phaseCorrelateRes(src1, src2, window) -> retval, response
        
    pointPolygonTest(contour, pt, measureDist) -> retval
    polarToCart(magnitude, angle[, x[, y[, angleInDegrees]]]) -> x, y
    polylines(img, pts, isClosed, color[, thickness[, lineType[, shift]]]) -> None
    pow(src, power[, dst]) -> dst
    preCornerDetect(src, ksize[, dst[, borderType]]) -> dst
    projectPoints(objectPoints, rvec, tvec, cameraMatrix, distCoeffs[, imagePoints[, jacobian[, aspectRatio]]]) -> imagePoints, jacobian
        
    putText(img, text, org, fontFace, fontScale, color[, thickness[, lineType[, bottomLeftOrigin]]]) -> None
    pyrDown(src[, dst[, dstsize[, borderType]]]) -> dst
    pyrMeanShiftFiltering(src, sp, sr[, dst[, maxLevel[, termcrit]]]) -> dst
    pyrUp(src[, dst[, dstsize[, borderType]]]) -> dst
    randShuffle(dst[, iterFactor]) -> None
    randn(dst, mean, stddev) -> None
    randu(dst, low, high) -> None
    rectangle(img, pt1, pt2, color[, thickness[, lineType[, shift]]]) -> None
        
    rectify3Collinear(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, cameraMatrix3, distCoeffs3, imgpt1, imgpt3, imageSize, R12, T12, R13, T13, alpha, newImgSize, flags[, R1[, R2[, R3[, P1[, P2[, P3[, Q]]]]]]]) -> retval, R1, R2, R3, P1, P2, P3, Q, roi1, roi2
    reduce(src, dim, rtype[, dst[, dtype]]) -> dst
    remap(src, map1, map2, interpolation[, dst[, borderMode[, borderValue]]]) -> dst
    repeat(src, ny, nx[, dst]) -> dst
    reprojectImageTo3D(disparity, Q[, _3dImage[, handleMissingValues[, ddepth]]]) -> _3dImage
        
    resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) -> dst
    resizeWindow(winname, width, height) -> None
    scaleAdd(src1, alpha, src2[, dst]) -> dst
    segmentMotion(mhi, timestamp, segThresh[, segmask]) -> segmask, boundingRects
    sepFilter2D(src, ddepth, kernelX, kernelY[, dst[, anchor[, delta[, borderType]]]]) -> dst
    setIdentity(mtx[, s]) -> None
    setMouseCallback(windowName, onMouse [, param]) -> None
    setTrackbarPos(trackbarname, winname, pos) -> None
    setUseOptimized(onoff) -> None
    setWindowProperty(winname, prop_id, prop_value) -> None
        
    solve(src1, src2[, dst[, flags]]) -> retval, dst
    solveCubic(coeffs[, roots]) -> retval, roots
    solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs[, rvec[, tvec[, useExtrinsicGuess[, flags]]]]) -> retval, rvec, tvec
        
    solvePnPRansac(objectPoints, imagePoints, cameraMatrix, distCoeffs[, rvec[, tvec[, useExtrinsicGuess[, iterationsCount[, reprojectionError[, minInliersCount[, inliers[,      flags]]]]]]]]) -> rvec, tvec, inliers
        
    solvePoly(coeffs[, roots[, maxIters]]) -> retval, roots
    sort(src, flags[, dst]) -> dst
    sortIdx(src, flags[, dst]) -> dst
    split(m[, mv]) -> mv
    sqrt(src[, dst]) -> dst
    startWindowThread() -> retval
    
    stereoCalibrate(objectPoints, imagePoints1, imagePoints2, imageSize[, cameraMatrix1[, distCoeffs1[, cameraMatrix2[, distCoeffs2[, R[, T[, E[, F[, criteria[, flags]]]]]]]]]]) -> retval, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, R, T, E, F
        
    stereoRectify(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R, T[, R1[, R2[, P1[, P2[, Q[, flags[, alpha[, newImageSize]]]]]]]]) -> R1, R2, P1, P2, Q, validPixROI1, validPixROI2
        
    stereoRectifyUncalibrated(points1, points2, F, imgSize[, H1[, H2[, threshold]]]) -> retval, H1, H2
    subtract(src1, src2[, dst[, mask[, dtype]]]) -> dst
    sumElems(src) -> retval
    threshold(src, thresh, maxval, type[, dst]) -> retval, dst
    trace(mtx) -> retval
    transform(src, m[, dst]) -> dst
        
    transpose(src[, dst]) -> dst
    triangulatePoints(projMatr1, projMatr2, projPoints1, projPoints2[, points4D]) -> points4D
    undistort(src, cameraMatrix, distCoeffs[, dst[, newCameraMatrix]]) -> dst
    undistortPoints(src, cameraMatrix, distCoeffs[, dst[, R[, P]]]) -> dst
    updateMotionHistory(silhouette, mhi, timestamp, duration) -> None
        
    useOptimized() -> retval
    validateDisparity(disparity, cost, minDisparity, numberOfDisparities[, disp12MaxDisp]) -> None
    vconcat(src[, dst]) -> dst
        
    waitKey([, delay]) -> retval
    warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]]) -> dst
    warpPerspective(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]]) -> dst
    watershed(image, markers) -> None

    总结:

    对于CV2的使用,其主要类型是mat型,可以直接下标索引:如 Image [idxY] [idxX] = 65552

      其中有一个疑惑的问题是:

    对于resize的使用,  Image  =cv.resize(image,(w,h))    此句函数的使用会 导致:自动把Image 转化为3通道;这直接让我没有办法使用cv2了。


    (二):引入Cv的使用方法:

    引入cv2.cv 后,使用cv便可以找到几乎在cv2refman里面的所有函数了,此处不再列出,举个例子说明。

    path ="D:/Develope/EclipseWorks/SLICSeg/Recog/ViewX_2.094395 ViewY_0.000000 ViewZ_6.141592.pcd_comb.pcd_label.txtNo_SLIC.png"
    Image      = cv.LoadImageM(path,2)  # 原始图像载入,参数为1 会转化为 三通道,8bit
    cv.ShowImage("name", Image)
    cv.WaitKey(0)
    ImageHeight= Image.height  #Image.shape[0]  #Iplimage 没有shape属性!
    ImageWidth = Image.width
    
    cv.Size = (Image.width, Image.height)
    cv.Size = cv.GetSize(Image)
    
    ImagePatch = cv.CreateImage(cv.Size,16, 1)
    cv.Copy(Image, ImagePatch)#copy大小必须一致!
    cv.SetImageROI(ImagePatch,(0,0,Image.width/2,Image.height/2))
    path ="Patch2/"+ "path_"+ “76”+"_" + "S_posX" +"_Image.png" 
    cv.SaveImage(path,ImagePatch)
    cv.ShowImage("name", ImagePatch)
    cv.WaitKey(0)
    
    ImagePatch = cv.CreateImage((320,240), 16, 1)
    cv.Resize(Image,  ImagePatch, cv.CV_INTER_LINEAR)
    rows  = Image.height
    cols   = Image.width
    Mat    = cv.CreateMat(rows, cols, cv.CV_16UC1)
    cv.Convert(Image, Mat)
    Image[24,25] =0  #对于单通道图像
    ImagePatch = cv.CreateImage(cv.Size,8, 3)
    ImagePatch[24,25][2] =255#对于三通道图像

    至此,基本语法讲解告一段落!


  • 相关阅读:
    等待通知--wait notify
    表单重复提交与解决
    Cookie Session 与Token
    springMVC实现登陆
    第11章 AOF持久化
    第10章 RDB持久化
    MyBatis动态SQL
    第4章 网络层
    第9章 数据库
    代理设计模式
  • 原文地址:https://www.cnblogs.com/wishchin/p/9200285.html
Copyright © 2020-2023  润新知