• 三维重建:多点透视cvSolvePNP的替代函数(Code)


           在调试JNI程序时,所有的Shell都已经加载完成,而唯一真正核心的cv::SolvePnP却不能在JNI里面获得通行证,经过反复测试都不能运行,因此只能忍痛舍弃,自行编写一个具有相似功能的函数对其进行替代。

            原函数是这样的:

    void rec3D::reconstruct3D(const vector<Point2f>& image_points, Mat& rvecs, Mat& tvecs)
    {
     print_Matf( cam.intrinsic_Mat );
     print_Matf( cam.disCoeff );
     print_VecPointf(image_points);
     print_VecPointf(cam.object_points );
    
     cv::solvePnP(cam.object_points , image_points , cam.intrinsic_Mat , cam.disCoeff , rvecs , tvecs , false , CV_P3P);
    
     print_Matf( cam.intrinsic_Mat );
     print_Matf( cam.disCoeff );
     print_VecPointf(image_points);
     print_VecPointf(cam.object_points );
     print_Matf( rvecs );
     print_Matf( tvecs );
    }
    

             当然,函数后面的测试时没有机会调用的,而函数前面的测试则是准确无误的....



    1.   关于多点投射的函数cv::solvePnP

    参考链接:http://blog.csdn.net/abc20002929/article/details/8520063

    Wiki链接:CV照相机 标定和三维重建 详细资料


    计算多点透视问题,有离散的方法和解方程的方法,分别为cvPOSIT 和SolePnP。

    应用场景:给定物体3D点集与对应的图像2D点集,之后进行姿态计算(即求旋转与位移矩阵)。


    输入输出:

    1.输入都是3D点集和对应的2D点集,其中cvPOSIT的3D点包含在posit_object结构中

    2.输出均包括旋转矩阵和位移向量

    形式不同:

    solvePnP有摄像机的一些内参

    语义不同:


    除了一堆数据类型检查和转化外,其实solvePnP调用的是cvFindExtrinsicCameraParams2通过已知的内参进行未知外参求解,是一个精确解;而cvPOSIT是用仿射投影模型近似透视投影模型下,不断迭代计算出来的估计值(在物体深度变化相对于物体到摄像机的距离比较大的时候,这种算法可能不收敛)。


    2. 函数原型

    Finds an object pose from 3D-2D point correspondences.


    solvePnP(http://docs.opencv.org/modules/calib3d /doc/camera_calibration_and_3d_reconstruction.html#solvepnp)
    bool solvePnP(
    InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs,
     OutputArray rvec, OutputArray tvec,
    bool useExtrinsicGuess=false, int flags=ITERATIVE )


    cvPOSIT(http://www.opencv.org.cn/index.php/Cv%E7%85%A7%E7%9B%B8%E6%9C%BA%E5%AE%9A%E6%A0%87%E5%92%8C%E4%B8%89%E7%BB%B4%E9%87%8D%E5%BB%BA#POSIT)

    执行POSIT算法

    void cvPOSIT(
     CvPOSITObject* posit_object, CvPoint2D32f* image_points,
    >double focal_length,
    CvTermCriteria criteria, CvMatr32f rotation_matrix,  CvVect32f translation_vector );


    3.Cv2.410的源代码

    OpenCV参考手册第392页

    bool cv::solvePnP( InputArray _opoints, InputArray _ipoints,
                      InputArray _cameraMatrix, InputArray _distCoeffs,
                      OutputArray _rvec, OutputArray _tvec, bool useExtrinsicGuess, int flags )
    {
        Mat opoints = _opoints.getMat(), ipoints = _ipoints.getMat();
        int npoints = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F));
        CV_Assert( npoints >= 0 && npoints == std::max(ipoints.checkVector(2, CV_32F), ipoints.checkVector(2, CV_64F)) );
        _rvec.create(3, 1, CV_64F);
        _tvec.create(3, 1, CV_64F);
        Mat cameraMatrix = _cameraMatrix.getMat(), distCoeffs = _distCoeffs.getMat();
    
        if (flags == CV_EPNP)
        {
            cv::Mat undistortedPoints;
            cv::undistortPoints(ipoints, undistortedPoints, cameraMatrix, distCoeffs);
            epnp PnP(cameraMatrix, opoints, undistortedPoints);
    
            cv::Mat R, rvec = _rvec.getMat(), tvec = _tvec.getMat();
            PnP.compute_pose(R, tvec);
            cv::Rodrigues(R, rvec);
            return true;
        }
        else if (flags == CV_P3P)
        {
            CV_Assert( npoints == 4);
            cv::Mat undistortedPoints;
            cv::undistortPoints(ipoints, undistortedPoints, cameraMatrix, distCoeffs);
            p3p P3Psolver(cameraMatrix);
    
            cv::Mat R, rvec = _rvec.getMat(), tvec = _tvec.getMat();
            bool result = P3Psolver.solve(R, tvec, opoints, undistortedPoints);
            if (result)
                cv::Rodrigues(R, rvec);
            return result;
        }
        else if (flags == CV_ITERATIVE)
        {
            CvMat c_objectPoints = opoints, c_imagePoints = ipoints;
            CvMat c_cameraMatrix = cameraMatrix, c_distCoeffs = distCoeffs;
            CvMat c_rvec = _rvec.getMat(), c_tvec = _tvec.getMat();
            cvFindExtrinsicCameraParams2(&c_objectPoints, &c_imagePoints, &c_cameraMatrix,
                                         c_distCoeffs.rows*c_distCoeffs.cols ? &c_distCoeffs : 0,
                                         &c_rvec, &c_tvec, useExtrinsicGuess );
            return true;
        }
        else
            CV_Error(CV_StsBadArg, "The flags argument must be one of CV_ITERATIVE or CV_EPNP");
        return false;
    }

    有效代码:

       

    else if (flags == CV_P3P)
        {
            CV_Assert( npoints == 4);
            cv::Mat undistortedPoints;
            cv::undistortPoints(ipoints, undistortedPoints, cameraMatrix, distCoeffs);
            p3p P3Psolver(cameraMatrix);
    
            cv::Mat R, rvec = _rvec.getMat(), tvec = _tvec.getMat();
            bool result = P3Psolver.solve(R, tvec, opoints, undistortedPoints);
            if (result)
                cv::Rodrigues(R, rvec);
            return result;
        }

    4. 函数mySolvePnP()

    int rec3D::mySolvePnP(
     //vector<cv::Point3f>  &_opoints , vector<cv::Point2f>  &_ipoints ,
     InputArray  &_opoints , InputArray  &_ipoints ,
     //cv::Mat  &intrinsic_Mat , cv::Mat  &disCoeff ,
     InputArray &_cameraMatrix , InputArray  &_distCoeffs ,
     //cv::Mat  &rvecs , cv::Mat  &tvecs ,
     OutputArray  &_rvec , OutputArray  &_tvec ,
     bool useExtrinsicGuess, int flags)
    {
     cv::Mat opoints = _opoints.getMat(), ipoints = _ipoints.getMat();
     int npoints = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F));
     CV_Assert( npoints >= 0 && npoints == std::max(ipoints.checkVector(2, CV_32F), ipoints.checkVector(2, CV_64F)) );
     _rvec.create(3, 1, CV_64F);
     _tvec.create(3, 1, CV_64F);
     cv::Mat cameraMatrix = _cameraMatrix.getMat(), distCoeffs = _distCoeffs.getMat();
    
     {
      CV_Assert( npoints == 4);
      cv::Mat undistortedPoints;
      cv::undistortPoints(ipoints, undistortedPoints, cameraMatrix, distCoeffs);
      p3p P3Psolver(cameraMatrix);
    
      cv::Mat R, rvec = _rvec.getMat(), tvec = _tvec.getMat();
      bool result = P3Psolver.solve(R, tvec, opoints, undistortedPoints);
      if (result)
       cv::Rodrigues(R, rvec);
      return result;
     }
     return true;
    }
    暂时未完成,待修改...................
    
    真正运行的JNI函数:

    真正可以运行的JNI函数:
    int rec3D::mySolvePnP(
     vector<cv::Point3f>  &_opoints ,const  vector<cv::Point2f>  &_ipoints ,
     //InputArray  &_opoints , InputArray  &_ipoints ,
     cv::Mat  &intrinsic_Mat , cv::Mat  &disCoeff ,
     //InputArray &_cameraMatrix , InputArray  &_distCoeffs ,
     cv::Mat  &_rvecs , cv::Mat  &_tvecs ,
     //OutputArray  &_rvec , OutputArray  &_tvec ,
     bool useExtrinsicGuess, int flags)
    {
     cv::Mat opoints = Mat(_opoints, true);// _opoints.getMat();
     cv::Mat ipoints = Mat(_ipoints , true);///_ipoints.getMat();
    
     int npoints = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F));//The error source! wishchin !
    
     CV_Assert( npoints >= 0 && npoints == std::max(ipoints.checkVector(2, CV_32F), ipoints.checkVector(2, CV_64F)) );
     //_rvecs= new Mat(3, 1, CV_64F);//_rvec.create(3, 1, CV_64F);
     //_tvecs= new Mat(3, 1, CV_64F);//.create(3, 1, CV_64F);
    
     //cv::Mat cameraMatrix = _cameraMatrix.getMat(), distCoeffs = _distCoeffs.getMat();
     cv::Mat cameraMatrix = intrinsic_Mat.clone();
     cv::Mat distCoeffs = disCoeff.clone();
    
     //{
    
     CV_Assert( npoints == 4);
     cv::Mat undistortedPoints(ipoints.rows,ipoints.cols, ipoints.type() );
     //undistortedPoints 为输出参数!
     undistortPointsMy(ipoints, undistortedPoints, cameraMatrix, distCoeffs);//undistortPoints(ipoints, undistortedPoints, cameraMatrix, distCoeffs);
    
     //1.修改函数
     //p3pMy P3Psolver= new p3pMy(cameraMatrix);
     p3pMy P3Psolver(cameraMatrix);
    
     //cv::Mat R, rvec = _rvec.getMat(), tvec = _tvec.getMat();
     //cv::Mat     R = _rvecs.clone();
     //cv::Mat  rvec = _rvecs.clone();
     //cv::Mat  tvec = _tvecs.clone();
     ////2.修改函数
     //bool result = P3Psolver.solve(R, tvec, opoints, undistortedPoints);
    
     cv::Mat     R;// = _rvecs.clone();
     //cv::Mat  rvec = _rvecs.clone();
     //cv::Mat  tvec = _tvecs.clone();
    
     //2.修改函数
     bool result = P3Psolver.solve(_rvecs, _tvecs, opoints, undistortedPoints);
    
     if (result) cv::Rodrigues(_rvecs, R);//cv::Rodrigues(R, rvec);
    
     //return result;
     //}
     return true;
    }
    
    //void rec3D::undistortPointsMy( InputArray _src, OutputArray _dst,
    // InputArray _cameraMatrix,
    // InputArray _distCoeffs,
    // InputArray _Rmat,
    // InputArray _Pmat )
    void rec3D::undistortPointsMy(
     cv::Mat &_src,  cv::Mat &_dst,
     cv::Mat &_cameraMatrix,
     cv::Mat &_distCoeffs)
    {
     cv::Mat src =_src;// _src.getMat();
     cv::Mat cameraMatrix = _cameraMatrix;//_cameraMatrix.getMat();
     cv::Mat distCoeffs = _distCoeffs;//_distCoeffs.getMat();//, R = _Rmat.getMat(), P = _Pmat.getMat();
     cv::Mat R;
     cv::Mat P;
    
     CV_Assert( src.isContinuous() && (src.depth() == CV_32F || src.depth() == CV_64F) &&
      ((src.rows == 1 && src.channels() == 2) || src.cols*src.channels() == 2));
    
     //_dst.create(src.size(), src.type(), -1, true);
     Mat dst = _dst;//_dst.getMat();
    
     //Fuck!引用传来传去的! dst矩阵!
     CvMat _csrc = src, _cdst = dst, _ccameraMatrix = cameraMatrix;
     CvMat matR, matP, _cdistCoeffs, *pR=0, *pP=0, *pD=0;
     if( R.data )
      pR = &(matR = R);
     if( P.data )
      pP = &(matP = P);
     if( distCoeffs.data )
      pD = &(_cdistCoeffs = distCoeffs);
    
     //Fuck!引用传来传去的! dst矩阵!
     //cvUndistortPoints(&_csrc, &_cdst, &_ccameraMatrix, pD, pR, pP);
     cvUndistortPointsMyRf(&_csrc, &_cdst, &_ccameraMatrix, pD, pR, pP);
    }
    
    //逻辑混乱!!!
    void rec3D::cvUndistortPointsMy(
     const CvMat* _src, CvMat* _dst, const CvMat* _cameraMatrix,const CvMat* _distCoeffs,
     const CvMat* matR, const CvMat* matP )
    {
     double A[3][3], RR[3][3], k[8]={0,0,0,0,0,0,0,0}, fx, fy, ifx, ify, cx, cy;
     CvMat matA=cvMat(3, 3, CV_64F, A), _Dk;
     CvMat _RR=cvMat(3, 3, CV_64F, RR);
     const CvPoint2D32f* srcf;
     const CvPoint2D64f* srcd;
     CvPoint2D32f* dstf;
     CvPoint2D64f* dstd;
     int stype, dtype;
     int sstep, dstep;
     int i, j, n, iters = 1;
    
     CV_Assert( CV_IS_MAT(_src) && CV_IS_MAT(_dst) &&
      (_src->rows == 1 || _src->cols == 1) &&
      (_dst->rows == 1 || _dst->cols == 1) &&
      _src->cols + _src->rows - 1 == _dst->rows + _dst->cols - 1 &&
      (CV_MAT_TYPE(_src->type) == CV_32FC2 || CV_MAT_TYPE(_src->type) == CV_64FC2) &&
      (CV_MAT_TYPE(_dst->type) == CV_32FC2 || CV_MAT_TYPE(_dst->type) == CV_64FC2));
    
     CV_Assert( CV_IS_MAT(_cameraMatrix) &&
      _cameraMatrix->rows == 3 && _cameraMatrix->cols == 3 );
    
     cvConvert( _cameraMatrix, &matA );//这一句关系到画三维坐标系,但看起来毫无用处!
    
     if( _distCoeffs )
     {
      CV_Assert( CV_IS_MAT(_distCoeffs) &&
       (_distCoeffs->rows == 1 || _distCoeffs->cols == 1) &&
       (_distCoeffs->rows*_distCoeffs->cols == 4 ||
       _distCoeffs->rows*_distCoeffs->cols == 5 ||
       _distCoeffs->rows*_distCoeffs->cols == 8));
    
      _Dk = cvMat( _distCoeffs->rows, _distCoeffs->cols,
       CV_MAKETYPE(CV_64F,CV_MAT_CN(_distCoeffs->type)), k);
    
      cvConvert( _distCoeffs, &_Dk );
      iters = 5;
     }
    
     if( matR )
     {
      CV_Assert( CV_IS_MAT(matR) && matR->rows == 3 && matR->cols == 3 );
      cvConvert( matR, &_RR );
     }
     else
      cvSetIdentity(&_RR);
    
     if( matP )
     {
      double PP[3][3];
      CvMat _P3x3, _PP=cvMat(3, 3, CV_64F, PP);
      CV_Assert( CV_IS_MAT(matP) && matP->rows == 3 && (matP->cols == 3 || matP->cols == 4));
      cvConvert( cvGetCols(matP, &_P3x3, 0, 3), &_PP );
      cvMatMul( &_PP, &_RR, &_RR );
     }
    
     srcf = (const CvPoint2D32f*)_src->data.ptr;
     srcd = (const CvPoint2D64f*)_src->data.ptr;
     dstf = (CvPoint2D32f*)_dst->data.ptr;
     dstd = (CvPoint2D64f*)_dst->data.ptr;
     stype = CV_MAT_TYPE(_src->type);
     dtype = CV_MAT_TYPE(_dst->type);
     sstep = _src->rows == 1 ? 1 : _src->step/CV_ELEM_SIZE(stype);
     dstep = _dst->rows == 1 ? 1 : _dst->step/CV_ELEM_SIZE(dtype);
    
     n = _src->rows + _src->cols - 1;
    
     fx = A[0][0];
     fy = A[1][1];
     ifx = 1./fx;
     ify = 1./fy;
     cx = A[0][2];
     cy = A[1][2];
    
     for( i = 0; i < n; i++ )
     {
      double x, y, x0, y0;
      if( stype == CV_32FC2 )
      {
       x = srcf[i*sstep].x;
       y = srcf[i*sstep].y;
      }
      else
      {
       x = srcd[i*sstep].x;
       y = srcd[i*sstep].y;
      }
    
      x0 = x = (x - cx)*ifx;
      y0 = y = (y - cy)*ify;
    
      // compensate distortion iteratively
      for( j = 0; j < iters; j++ )
      {
       double r2 = x*x + y*y;
       double icdist = (1 + ((k[7]*r2 + k[6])*r2 + k[5])*r2)/(1 + ((k[4]*r2 + k[1])*r2 + k[0])*r2);
       double deltaX = 2*k[2]*x*y + k[3]*(r2 + 2*x*x);
       double deltaY = k[2]*(r2 + 2*y*y) + 2*k[3]*x*y;
       x = (x0 - deltaX)*icdist;
       y = (y0 - deltaY)*icdist;
      }
    
      double xx = RR[0][0]*x + RR[0][1]*y + RR[0][2];
      double yy = RR[1][0]*x + RR[1][1]*y + RR[1][2];
      double ww = 1./(RR[2][0]*x + RR[2][1]*y + RR[2][2]);
      x = xx*ww;
      y = yy*ww;
    
      if( dtype == CV_32FC2 )
      {
       dstf[i*dstep].x = (float)x;
       dstf[i*dstep].y = (float)y;
      }
      else
      {
       dstd[i*dstep].x = x;
       dstd[i*dstep].y = y;
      }
     }
    }
    
    
    void rec3D::cvUndistortPointsMyRf(
     const CvMat* _src, CvMat* _dst,
     const CvMat* _cameraMatrix,
     const CvMat* _distCoeffs,
     const CvMat* matR,
     const CvMat* matP )
    {
     double A[3][3], RR[3][3];
     double k[8]={0,0,0,0,0,0,0,0};
     double fx, fy, ifx, ify, cx, cy;
    
     CvMat matA=cvMat(3, 3, CV_64F, A);
     CvMat _Dk;
     CvMat _RR=cvMat(3, 3, CV_64F, RR);
    
     const CvPoint2D32f* srcf;
     const CvPoint2D64f* srcd;
     CvPoint2D32f* dstf;
     CvPoint2D64f* dstd;
    
     int stype, dtype;
     int sstep, dstep;
     int i, j, n, iters = 1;
    
     CV_Assert(
      CV_IS_MAT(_src) && CV_IS_MAT(_dst) &&
      (_src->rows == 1 || _src->cols == 1) &&
      (_dst->rows == 1 || _dst->cols == 1) &&
      _src->cols + _src->rows - 1 == _dst->rows + _dst->cols - 1 &&
      (CV_MAT_TYPE(_src->type) == CV_32FC2 || CV_MAT_TYPE(_src->type) == CV_64FC2) &&
      (CV_MAT_TYPE(_dst->type) == CV_32FC2 || CV_MAT_TYPE(_dst->type) == CV_64FC2));
    
     CV_Assert( CV_IS_MAT(_cameraMatrix) &&
      _cameraMatrix->rows == 3 && _cameraMatrix->cols == 3 );
    
     //图像到矩阵的转换:cvConvert( src, dst );
     //cvConvert( _cameraMatrix, &matA );//这一句关系到画三维坐标系,但看起来毫无用处!
     cvConvertMy( _cameraMatrix, &matA );
    
     if( _distCoeffs )
     {
      CV_Assert( CV_IS_MAT(_distCoeffs) &&
       (_distCoeffs->rows == 1 || _distCoeffs->cols == 1) &&
       (_distCoeffs->rows*_distCoeffs->cols == 4 ||
       _distCoeffs->rows*_distCoeffs->cols == 5 ||
       _distCoeffs->rows*_distCoeffs->cols == 8));
    
      _Dk = cvMat( _distCoeffs->rows, _distCoeffs->cols,
       CV_MAKETYPE(CV_64F,CV_MAT_CN(_distCoeffs->type)), k);
    
      //cvConvert( _distCoeffs, &_Dk );
      cvConvertMy(_distCoeffs, &_Dk );
      iters = 5;
     }
    
     if( matR )
     {
      CV_Assert( CV_IS_MAT(matR) && matR->rows == 3 && matR->cols == 3 );
      //cvConvert( matR, &_RR );
      cvConvertMy(matR, &_RR );
     }
     else
      cvSetIdentity(&_RR);
    
     if( matP )
     {
      double PP[3][3];
      CvMat _P3x3, _PP=cvMat(3, 3, CV_64F, PP);
      CV_Assert( CV_IS_MAT(matP) && matP->rows == 3 && (matP->cols == 3 || matP->cols == 4));
      //cvConvert( cvGetCols(matP, &_P3x3, 0, 3), &_PP );
      cvConvertMy( cvGetCols(matP, &_P3x3, 0, 3), &_PP );
      cvMatMul( &_PP, &_RR, &_RR );
     }
    
     srcf = (const CvPoint2D32f*)_src->data.ptr;
     srcd = (const CvPoint2D64f*)_src->data.ptr;
    
     //dst的指针引用!
     dstf = (CvPoint2D32f*)_dst->data.ptr;
     dstd = (CvPoint2D64f*)_dst->data.ptr;
     stype = CV_MAT_TYPE(_src->type);
     dtype = CV_MAT_TYPE(_dst->type);
     sstep = _src->rows == 1 ? 1 : _src->step/CV_ELEM_SIZE(stype);
     dstep = _dst->rows == 1 ? 1 : _dst->step/CV_ELEM_SIZE(dtype);
    
     n = _src->rows + _src->cols - 1;
    
     fx = A[0][0];
     fy = A[1][1];
     ifx = 1./fx;
     ify = 1./fy;
     cx = A[0][2];
     cy = A[1][2];
    
     for( i = 0; i < n; i++ )
     {
      double x, y, x0, y0;
      if( stype == CV_32FC2 )
      {
       x = srcf[i*sstep].x;
       y = srcf[i*sstep].y;
      }
      else
      {
       x = srcd[i*sstep].x;
       y = srcd[i*sstep].y;
      }
    
      x0 = x = (x - cx)*ifx;
      y0 = y = (y - cy)*ify;
    
      // compensate distortion iteratively
      for( j = 0; j < iters; j++ )
      {
       double r2 = x*x + y*y;
       double icdist = (1 + ((k[7]*r2 + k[6])*r2 + k[5])*r2)/(1 + ((k[4]*r2 + k[1])*r2 + k[0])*r2);
       double deltaX = 2*k[2]*x*y + k[3]*(r2 + 2*x*x);
       double deltaY = k[2]*(r2 + 2*y*y) + 2*k[3]*x*y;
       x = (x0 - deltaX)*icdist;
       y = (y0 - deltaY)*icdist;
      }
    
      double xx = RR[0][0]*x + RR[0][1]*y + RR[0][2];
      double yy = RR[1][0]*x + RR[1][1]*y + RR[1][2];
      double ww = 1./(RR[2][0]*x + RR[2][1]*y + RR[2][2]);
      x = xx*ww;
      y = yy*ww;
    
      if( dtype == CV_32FC2 )
      {
       dstf[i*dstep].x = (float)x;
       dstf[i*dstep].y = (float)y;
      }
      else
      {
       dstd[i*dstep].x = x;
       dstd[i*dstep].y = y;
      }
     }
    }
    
    //bool rec3D::cvConvertMy(const CvMat* _cameraMatrix,double matA[][3] )
    //{
    //
    // return true;
    //}
    
    bool rec3D::cvConvertMy(const CvMat* Mat, CvMat* MatA )
    {
     int C = Mat->step/ Mat->cols/sizeof(Mat->type);
     for (int row = 0; row < Mat->rows && row < MatA->rows; row++){
    
      float* ptr  = (float*)(Mat->data.ptr + row * Mat->step);//第row行数据的起始指针
      float* ptrD = (float*)(MatA->data.ptr + row * MatA->step);
    
      for (int col = 0; col < Mat->cols && col < MatA->cols; col++)
      {
       for (int i=0;i<C;++i)
       {
        *(ptrD+C*col+i)   = *(ptr+C*col+i);
       }
       //*(ptrD+3*col)   = *(ptr+3*col);//cout<<*(ptr+3*col)<<endl;
       //*(ptrD+3*col+1)   = *(ptr+3*col+1);//cout<<*(ptr+3*col+1)<<endl;
       //*(ptrD+3*col+2)   = *(ptr+3*col+2);//cout<<*(ptr+3*col+2)<<endl;
      }
     }
    
     return true;
    }

    完成!

  • 相关阅读:
    ABAP 没有地方输入H 进入DEBUG 怎么办?
    Jsoup实现java模拟登陆
    Jsoup模拟登陆例子
    Jsoup:解决java.net.UnknownHostException的问题
    Java抓取网页数据(原网页+Javascript返回数据)
    利用StringEscapeUtils对字符串进行各种转义与反转义(Java)
    MyEclipse + Tomcat 热部署问题
    管道寄售库存MRKO结算后,冲销问题
    c#操作appsettiongs
    让你的微信小程序具有在线支付功能
  • 原文地址:https://www.cnblogs.com/wishchin/p/9199997.html
Copyright © 2020-2023  润新知