论文: https://arxiv.org/pdf/1804.02815.pdf
主页:http://mmlab.ie.cuhk.edu.hk/projects/SFTGAN/
代码:https://github.com/xinntao/SFTGAN
贡献点:
-
提出了SFT层
In this paper, we show that it is possible to recover textures faithful to semantic classes.[semantic priors]
Our final results show that an SR network equipped with SFT can generate more realistic and visually pleasing textures in comparison to state-of-the-art SRGAN [27] and EnhanceNet [38].基于语义类别分类来恢复细节,并且加了SFT的SR网络会得到更加真实和视觉上更好的纹理。
-
对SR中一些loss进行了分析和探讨。
conventional pixel-wise mean squared error (MSE) loss [7] that tends to encourage blurry and overly-smoothed results
adversarial loss to encourage the network to favor solutions that look more like natural images
基于像素的损失会导致图像模糊和平滑;使用perceptual loss对特征维度进行优化,结合adversarial loss能得到更自然的结果
思路:
applying an affine transformation spatially to each intermediate feature maps in an SR network
个人理解:
网络结构如下,SFT网络的输入为LR图像和一个Condition
,这个condition是由一个分割网络得到lr图像中不同类别的语义分割图经过四个卷积构成的condition network得到的。在SFT网络中SFT layer针对该condition进行处理得到对应的scale
和shift
对feature map进行transform。所以网络最后能够针对不同类别的语义学到相应的处理,也就可以通过语义分割mask引导网络的处理。