【题解】CF894E Ralph and Mushrooms (缩点)
这是紫?给个解方程算法
考虑一条边若可以重复遍历说明一定有环,有环的话一定会把环上的蘑菇榨干,考虑一条边从全部到榨干的贡献是多少
[sum_{i=0}^x (w-sum_{j=0}^i j)=sum_{i=0}^x (w-{i(i+1)over 2})
]
那么考虑解出(x)的值,根据初中知识解出来(x=lfloor{-1+sqrt{1+8w}over 2} floor),预处理(sum {i(i+1)over 2})可以直接计算贡献(其实也可以解通项公式)
然后Tarjan缩点之后变成DAG上的DP,同时有点权和边权的DAG DP
时间复杂度(O(n))
//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cmath>
using namespace std; typedef long long ll; char __buf[1<<18],*__c=__buf,*__ed=__buf;
inline int qr(){
register int ret=0,f=0;
register char c=getchar();
while(!isdigit(c))f|=c==45,c=getchar();
while(isdigit(c)) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}
const int maxn=1e6+5;
struct E{int to,w;};
vector<E> e[maxn],e2[maxn];
inline void add(const int&fr,const int&to,const int&w){e[fr].push_back({to,w});}
inline void add2(const int&fr,const int&to,const int&w){
e2[fr].push_back({to,w});
}
int n,m;
int qaq[maxn],cnt;
ll w[maxn],dp[maxn];
bool usd[maxn];
int low[maxn],dfn[maxn],in[maxn],stk[maxn],top,siz[maxn];
ll s[maxn];
void dfs(const int&now){
stk[++top]=now; in[now]=1;
low[now]=dfn[now]=++*dfn;
for(auto t:e[now]){
if(!dfn[t.to]) dfs(t.to),low[now]=min(low[now],low[t.to]);
else if(in[t.to]) low[now]=min(dfn[t.to],low[now]);
}
if(low[now]==dfn[now]){
++cnt;
int temp;
do temp=stk[top--],in[temp]=0,qaq[temp]=cnt,++siz[cnt];
while(temp!=now);
}
}
ll Dp(const int&now){
if(usd[now]) return dp[now];
dp[now]=0;
for(auto t:e2[now]) dp[now]=max(dp[now],Dp(t.to)+t.w);
usd[now]=1;
return dp[now]=w[now]+dp[now];
}
int main(){
n=qr(); m=qr();
for(int t=1,t1,t2,t3;t<=m;++t) t1=qr(),t2=qr(),t3=qr(),add(t1,t2,t3);
for(int t=1;t<maxn;++t) s[t]=s[t-1]+(1ll*t*(t+1)>>1);
int S=qr();
dfs(S);
for(int t=1;t<=n;++t)
for(auto i:e[t]){
if(qaq[t]==qaq[i.to]) {
int k=(sqrt((long double)1+8ll*i.w)-1)/2.0;
w[qaq[t]]=w[qaq[t]]+(k+1ll)*i.w-s[k];
}
else add2(qaq[t],qaq[i.to],i.w);
}
ll ans=Dp(qaq[S]);
printf("%lld
",ans);
return 0;
}