• HDU


    题目链接

    题意:

    $
    egin{cases}
    & F_{1} = A \
    & F_{2} = B \
    & F_{n} = C·F_{n-2} + D·F_{n-1}+lfloor frac{P}{n} floor
    end{cases}
    $

    给定递推式,求$F_{n}mod{1e9+7}$

    思路:

    一来就会想到用矩阵快速幂,但是其中有一个下取整就肯定不是裸的矩阵快速幂;

    有向下取整我们就可以用分块来做,复杂度为$sqrt{P}log_{2}P$

      1 /*
      2 *  Author: windystreet
      3 *  Date  : 2018-08-14 09:46:10
      4 *  Motto : Think twice, code once.
      5 */
      6 #include<bits/stdc++.h>
      7 
      8 using namespace std;
      9 
     10 #define X first
     11 #define Y second
     12 #define eps  1e-5
     13 #define gcd __gcd
     14 #define pb push_back
     15 #define PI acos(-1.0)
     16 #define lowbit(x) (x)&(-x)
     17 #define bug printf("!!!!!
    ");
     18 #define mem(x,y) memset(x,y,sizeof(x))
     19 
     20 typedef long long LL;
     21 typedef long double LD;
     22 typedef pair<int,int> pii;
     23 typedef unsigned long long uLL;
     24 
     25 const int maxn = 1e5+7;
     26 const int INF  = 1<<30;
     27 const int mod  = 1e9+7;
     28 
     29 struct Matrix
     30 {
     31     int n,m;
     32     LL ma[5][5];
     33     Matrix (int x,int y):n(x),m(y){clear();}
     34     void set(int n_,int m_){n = n_,m = m_;}
     35     LL *operator[](int x){return ma[x];}
     36     Matrix operator*(Matrix x){
     37         Matrix res(n,x.m);
     38         for(int i=1;i<=n;i++)
     39             for(int j=1;j<=x.m;j++)
     40                 for(int k=1;k<=m;k++)
     41                     (res[i][j]+=ma[i][k]*x[k][j]%mod+mod)%=mod;
     42         return res;
     43     }
     44     Matrix operator ^(int y){
     45         Matrix x(n,m);
     46         for(int i=1;i<=n;i++)
     47             for(int j=1;j<=m;j++)
     48                 x[i][j]=ma[i][j];
     49         Matrix res(x.n,x.n);
     50         for(int i=1;i<=x.n;i++)
     51             res[i][i]=1;
     52         for(;y;y>>=1,x=x*x)
     53             if(y&1)res=res*x;
     54         return res;
     55     }
     56     void print(){
     57         for(int i=1;i<=n;i++)
     58             for(int j=1;j<=m;j++)
     59                 printf("%lld%c",ma[i][j]," 
    "[j==m]);
     60     }
     61     void clear(){mem(ma,0);}
     62 };
     63 int a ,b,c,d ,p,n;
     64 pii f(int x,int y){
     65     if(!x)return make_pair(y,n);
     66     int l = max(y,(p+x+1)/(x+1)),r = min(n,p/x);
     67     return make_pair(l,r);
     68 }
     69 
     70 void solve(){
     71     scanf("%d%d%d%d%d%d",&a,&b,&c,&d,&p,&n);
     72     if(n==1)printf("%d
    ",a);
     73     if(n==2)printf("%d
    ",b);
     74     else{
     75         Matrix x(1,3),y(3,3);
     76         x[1][1] = b,x[1][2]=a,x[1][3]=1;
     77         for(int i=3;i<=n;){
     78             pii seg = f(p/i,i);
     79             y[1][1]=d,y[1][2] = 1,y[1][3] = 0;
     80             y[2][1]=c,y[2][2] = 0,y[2][3] = 0;
     81             y[3][1]=p/i,y[3][2]=0,y[3][3] = 1;
     82             x = x*(y^(seg.Y - seg.X  + 1));
     83             i = seg.Y+1;
     84         }
     85         printf("%lld
    ",x[1][1] );
     86     }
     87     
     88     return;
     89 }
     90 
     91 int main()
     92 {
     93 //    freopen("F:\in.txt","r",stdin);
     94 //    freopen("out.txt","w",stdout);
     95 //    ios::sync_with_stdio(false);
     96     int t = 1;
     97     scanf("%d",&t);
     98     while(t--){
     99     //    printf("Case %d: ",cas++);
    100         solve();
    101     }
    102     return 0;
    103 }
  • 相关阅读:
    linux(centos)搭建SVN服务器
    应该具备的能力
    Oracle trunc()函数的用法
    Realistic View for Autodesk Revit 2021
    Snowman
    A Material-Texture Painting Tool
    A Color Picker based on manifold learning
    CPU Path Tracing Renderer
    Rig Space FEM Simulation
    MPM Snow Simulation
  • 原文地址:https://www.cnblogs.com/windystreet/p/9473488.html
Copyright © 2020-2023  润新知