numpy、scipy官方文档 pandas官方网站 matplotlib官方文档
一、数据结构
二、数据处理
1、数据获取(excel文件数据基本信息)
#coding=utf-8 import pandas as pd import numpy as np excel_data = pd.read_excel("test.xlsx") print excel_data.shape #显示数据多少行多少列 print excel_data.index #显示数据所有行的索引数 print excel_data.columns #显示数据所有列的列名 print excel_data.info #显示所有列的列名 print excel_data.dtypes #显示数据的类型
输出:
''' name age time adress home 0 cat 2.0 1900-01-01 a NaN 1 dog 3.0 1900-01-02 b NaN 2 pig 4.0 1900-01-03 c NaN 3 bird 5.0 NaT d NaN 4 NaN 6.0 1900-01-02 e NaN 5 pig 7.0 1900-01-03 NaN NaN 6 bird NaN NaT NaN NaN '''
''' (7, 5) '''
''' RangeIndex(start=0, stop=7, step=1) '''
''' Index([u'name', u'age', u'time', u'adress', u'home'], dtype='object') '''
''' <bound method DataFrame.info of name age time adress home 0 cat 2.0 1900-01-01 a NaN 1 dog 3.0 1900-01-02 b NaN 2 pig 4.0 1900-01-03 c NaN 3 bird 5.0 NaT d NaN 4 NaN 6.0 1900-01-02 e NaN 5 pig 7.0 1900-01-03 NaN NaN 6 bird NaN NaT NaN NaN> '''
''' name object age float64 time datetime64[ns] adress object home float64 dtype: object '''
#Help on function read_excel in module pandas.io.excel: read_excel(*args, **kwargs) Read an Excel table into a pandas DataFrame Parameters ---------- io : string, path object (pathlib.Path or py._path.local.LocalPath), file-like object, pandas ExcelFile, or xlrd workbook. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/workbook.xlsx sheet_name : string, int, mixed list of strings/ints, or None, default 0 Strings are used for sheet names, Integers are used in zero-indexed sheet positions. Lists of strings/integers are used to request multiple sheets. Specify None to get all sheets. str|int -> DataFrame is returned. list|None -> Dict of DataFrames is returned, with keys representing sheets. Available Cases * Defaults to 0 -> 1st sheet as a DataFrame * 1 -> 2nd sheet as a DataFrame * "Sheet1" -> 1st sheet as a DataFrame * [0,1,"Sheet5"] -> 1st, 2nd & 5th sheet as a dictionary of DataFrames * None -> All sheets as a dictionary of DataFrames sheetname : string, int, mixed list of strings/ints, or None, default 0 .. deprecated:: 0.21.0 Use `sheet_name` instead header : int, list of ints, default 0 Row (0-indexed) to use for the column labels of the parsed DataFrame. If a list of integers is passed those row positions will be combined into a ``MultiIndex``. Use None if there is no header. names : array-like, default None List of column names to use. If file contains no header row, then you should explicitly pass header=None index_col : int, list of ints, default None Column (0-indexed) to use as the row labels of the DataFrame. Pass None if there is no such column. If a list is passed, those columns will be combined into a ``MultiIndex``. If a subset of data is selected with ``usecols``, index_col is based on the subset. parse_cols : int or list, default None .. deprecated:: 0.21.0 Pass in `usecols` instead. usecols : int or list, default None * If None then parse all columns, * If int then indicates last column to be parsed * If list of ints then indicates list of column numbers to be parsed * If string then indicates comma separated list of Excel column letters and column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of both sides. squeeze : boolean, default False If the parsed data only contains one column then return a Series dtype : Type name or dict of column -> type, default None Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} Use `object` to preserve data as stored in Excel and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion. .. versionadded:: 0.20.0 engine: string, default None If io is not a buffer or path, this must be set to identify io. Acceptable values are None or xlrd converters : dict, default None Dict of functions for converting values in certain columns. Keys can either be integers or column labels, values are functions that take one input argument, the Excel cell content, and return the transformed content. true_values : list, default None Values to consider as True .. versionadded:: 0.19.0 false_values : list, default None Values to consider as False .. versionadded:: 0.19.0 skiprows : list-like Rows to skip at the beginning (0-indexed) nrows : int, default None Number of rows to parse .. versionadded:: 0.23.0 na_values : scalar, str, list-like, or dict, default None Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: '', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan', '1.#IND', '1.#QNAN', 'N/A', 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'. keep_default_na : bool, default True If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they're appended to. verbose : boolean, default False Indicate number of NA values placed in non-numeric columns thousands : str, default None Thousands separator for parsing string columns to numeric. Note that this parameter is only necessary for columns stored as TEXT in Excel, any numeric columns will automatically be parsed, regardless of display format. comment : str, default None Comments out remainder of line. Pass a character or characters to this argument to indicate comments in the input file. Any data between the comment string and the end of the current line is ignored. skip_footer : int, default 0 .. deprecated:: 0.23.0 Pass in `skipfooter` instead. skipfooter : int, default 0 Rows at the end to skip (0-indexed) convert_float : boolean, default True convert integral floats to int (i.e., 1.0 --> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally Returns ------- parsed : DataFrame or Dict of DataFrames DataFrame from the passed in Excel file. See notes in sheet_name argument for more information on when a Dict of Dataframes is returned.
获取行 excel_data.head(5) #显示数据的前5行 excel_data.tail(5) #显示数据的后5行 excel_data.loc[0] #获取第一行的数据 excel_data.loc[2:4] #返回第3行到第4行的数据 excel_data.loc[[2,5,10]] #返回行标号为2,5,10三行数据,注意必须是由列表包含起来的数据。 excel_data.iloc[0] #获取第一行 获取列 excel_data["name"] #返回这一列("name")的数据 excel_data[["name","age"]] #返回列名为name和 age的两列数据 excel_data["name"].unique() #显示数据name列的所有唯一值, 有0值是因为对数据缺失值进行了填充 获取某行某列 excel_data.head(5)["name"] #获取前5行的name列 excel_data.head(5)["name"][0] #获取前5行的name列的元素值 excel_data.at[1,"age"] #表示取第二行"age"列的数据 excel_data.loc[0]["name"] #获取第一行且列名为name的数据 excel_data.loc[:,"age"] #获取age的那一列,这个冒号的意思是所有行,逗号表示行与列的区分 excel_data.loc[:,["age","time"]] #获取所有行的age列和time列的数据 excel_data.loc[1,["age","time"]] #获取第二行的age和time列的数据 excel_data.iloc[0:2,0:2] #获取前两行前两列的数据 excel_data.iloc[[1,2,4],[0,2]] #获取第1,2,4行中的0,2列的数据 获取空值 excel_data.notnull() #excel_data的非空值为True excel_data.isnull() #isnull是Python中检验空值的函数,返回的结果是逻辑值,包含空值返回True,不包含则返回False。可以对整个数据表进行检查,也可以单独对某一列进行空值检查。
2、数据清洗转换
1)增
2)删
a、删除无效行、列(整行、列都是空白,且说明无效的行、列)
b、删除指定行、列
Help on method drop in module pandas.core.frame: drop(self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise') method of pandas.core.frame.DataFrame instance Drop specified labels from rows or columns. Remove rows or columns by specifying label names and corresponding axis, or by specifying directly index or column names. When using a multi-index, labels on different levels can be removed by specifying the level. Parameters ---------- labels : single label or list-like Index or column labels to drop. axis : {0 or 'index', 1 or 'columns'}, default 0 Whether to drop labels from the index (0 or 'index') or columns (1 or 'columns'). index, columns : single label or list-like Alternative to specifying axis (``labels, axis=1`` is equivalent to ``columns=labels``). .. versionadded:: 0.21.0 level : int or level name, optional For MultiIndex, level from which the labels will be removed. inplace : bool, default False If True, do operation inplace and return None. errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and only existing labels are dropped.
#Help on method dropna in module pandas.core.frame: dropna(self, axis=0, how='any', thresh=None, subset=None, inplace=False) method of pandas.core.frame.DataFrame instance Remove missing values. See the :ref:`User Guide <missing_data>` for more on which values are considered missing, and how to work with missing data. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 Determine if rows or columns which contain missing values are removed. * 0, or 'index' : Drop rows which contain missing values. * 1, or 'columns' : Drop columns which contain missing value. .. deprecated:: 0.23.0: Pass tuple or list to drop on multiple axes. how : {'any', 'all'}, default 'any' Determine if row or column is removed from DataFrame, when we have at least one NA or all NA. * 'any' : If any NA values are present, drop that row or column. * 'all' : If all values are NA, drop that row or column. thresh : int, optional Require that many non-NA values. subset : array-like, optional Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include. inplace : bool, default False If True, do operation inplace and return None.
3)改
#Help on method fillna in module pandas.core.frame: fillna(self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs) method of pandas.core.frame.DataFrame instance Fill NA/NaN values using the specified method Parameters ---------- value : scalar, dict, Series, or DataFrame Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap axis : {0 or 'index', 1 or 'columns'} inplace : boolean, default False If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame). limit : int, default None If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None. downcast : dict, default is None a dict of item->dtype of what to downcast if possible, or the string 'infer' which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)
excel_data.reindex()
excel_data.rename()
excel_data.replace()
excel_data.astype()
excel_data.duplicated()
excel_data.unique()
excel_data.drop_duplictad()