• LRU Cache


    Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.

    get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
    put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

    Follow up:
    Could you do both operations in O(1) time complexity?

    Example:

    LRUCache cache = new LRUCache( 2 /* capacity */ );
    
    cache.put(1, 1);
    cache.put(2, 2);
    cache.get(1);       // returns 1
    cache.put(3, 3);    // evicts key 2
    cache.get(2);       // returns -1 (not found)
    cache.put(4, 4);    // evicts key 1
    cache.get(1);       // returns -1 (not found)
    cache.get(3);       // returns 3
    cache.get(4);       // returns 4
    

    分析: 一个比较好的设计数据结构的例子, 使用unordered_map 和list 容器, list 存放最近查询的节点 很巧妙的是map 中存放<int, list<pair<int, int>>::iterator> list中存放 list<pair<int, int>>, 这样两者互相访问都是O(1)

    class LRUCache {
    public:
        LRUCache(int capacity):_capacity(capacity) {
        }
        
        int get(int key) {
            auto iter =  Cache_Map.find(key);
            if(iter == Cache_Map.end())
                return -1;
            int value = iter->second->second;
            Cache_List.splice(Cache_List.begin(),Cache_List, iter->second);
            return value;
        }
        
        void put(int key, int value) {
            auto iter = Cache_Map.find(key);
            if(iter != Cache_Map.end()){
                iter->second->second = value;
                Cache_List.splice(Cache_List.begin(),Cache_List, iter->second);
                return;
            }
            if(Cache_Map.size() == _capacity){
                int del = Cache_List.back().first;
                cout << "delete "<< del << endl;
                Cache_List.pop_back();
                Cache_Map.erase(del);
            }
            Cache_List.emplace_front(key,value);
            // cout << "print the map"<<endl;
            // for(auto it = Cache_Map.begin(); it!=Cache_Map.end(); it++)
            //     cout << it->first << " -> "<< it->second->second<<endl;
            // cout << "print the list"<<endl;
            // for(auto it = Cache_List.begin(); it!=Cache_List.end(); it++)
            //     cout << it->first << " -> "<< it->second<<endl;
            Cache_Map[key] = Cache_List.begin();
            
           
        }
        
    private:
        int _capacity;
        unordered_map<int, list<pair<int, int>>::iterator> Cache_Map;
        list<pair<int, int>> Cache_List;
        
    };
    
    /**
     * Your LRUCache object will be instantiated and called as such:
     * LRUCache obj = new LRUCache(capacity);
     * int param_1 = obj.get(key);
     * obj.put(key,value);
     */
  • 相关阅读:
    知识点整理
    NGINX 内存池有感
    NGINX怎样处理惊群的
    NGINX 定时器
    制作linux内核安装包
    ES6变量的解构赋值
    jquery uploadify上传插件用法心得
    【转贴】J2EE中的13种技术规范
    【转帖】Servlet 3.0 新特性详解
    汉诺塔问题的一个C#实现
  • 原文地址:https://www.cnblogs.com/willwu/p/6403779.html
Copyright © 2020-2023  润新知