• MongoDB索引


    数据库中的索引就是用来提高查询操作的性能,但是会影响插入、更新和删除的效率,因为数据库不仅要执行这些操作,还要负责索引的更新。

    通过建立索引,影响一部分插入、更新和删除的效率,但是能大大挺高查询的效率,这个还是很值得的。

    为了开始后面的操作,首先通过MongoDB shell插入一些测试数据。

     1 for(var i=0;i<10;i++){
     2   var randAge = parseInt(5*Math.random()) + 20;
     3   var gender = (randAge%2)?"Male":"Female";
     4   db.school.students.insert({"name":"Will"+i, "gender": gender, "age": randAge});
     5 }
     6 
     7  
     8 /*    我的数据,以下测试都是基于这个测试,由于数据是随机生成,所以测试每次都会不同
     9 { "name" : "Will0", "gender" : "Female", "age" : 22 },
    10 { "name" : "Will1", "gender" : "Female", "age" : 20 },
    11 { "name" : "Will2", "gender" : "Male", "age" : 24 },
    12 { "name" : "Will3", "gender" : "Male", "age" : 23 },
    13 { "name" : "Will4", "gender" : "Male", "age" : 21 },
    14 { "name" : "Will5", "gender" : "Male", "age" : 20 },
    15 { "name" : "Will6", "gender" : "Female", "age" : 20 },
    16 { "name" : "Will7", "gender" : "Female", "age" : 24 },
    17 { "name" : "Will8", "gender" : "Male", "age" : 21 },
    18 { "name" : "Will9", "gender" : "Female", "age" : 24 },
    19 */

    索引的操作

    创建索引:在MongoDB shell中,可以通过ensureIndex()来创建所以,第一个参数是指定要创建所以的键。

    通过unique参数可以创建唯一索引。

    1 > db.school.students.ensureIndex({"name": 1}, {"unique": true})
    2 >

     查看索引:

     1 > db.school.students.getIndexes()
     2 [
     3         {
     4                 "v" : 1,
     5                 "key" : {
     6                         "_id" : 1
     7                 },
     8                 "ns" : "test.school.students",
     9                 "name" : "_id_"
    10         },
    11         {
    12                 "v" : 1,
    13                 "key" : {
    14                         "name" : 1
    15                 },
    16                 "unique" : true,
    17                 "ns" : "test.school.students",
    18                 "name" : "name_1"
    19         }
    20 ]
    21 >

    删除索引:

    1 > db.school.students.dropIndex("name_1")
    2 { "nIndexesWas" : 2, "ok" : 1 }
    3 >

    索引名称:默认情况下,索引的名称是"键_值_键_值…"的形式,当键的数量很多的时候,索引的名字就会很长。

    所以,在创建索引的时候,可以通过"name"参数自定义索引的名字。

    1 > db.school.students.ensureIndex({"name": 1}, {"name": "myIndex"})
    2 >

    explain()和hint()

    通过explain()可以得到很多跟find相关的信息,对索引的分析很有帮助。

    当有多个可以使用的索引时,MongoDB会自动选择最优索引,但是我们可以通过hint()操作选择我们想要使用的索引。

    下面来看看没有索引时explain()的输出:

     1 > db.school.students.find({"name": "Will5"}).explain()
     2 {
     3         "cursor" : "BasicCursor",
     4         "isMultiKey" : false,
     5         "n" : 1,
     6         "nscannedObjects" : 6,
     7         "nscanned" : 6,
     8         "nscannedObjectsAllPlans" : 6,
     9         "nscannedAllPlans" : 6,
    10         "scanAndOrder" : false,
    11         "indexOnly" : false,
    12         "nYields" : 0,
    13         "nChunkSkips" : 0,
    14         "millis" : 0,
    15         "indexBounds" : {
    16 
    17         },
    18         "server" : "××××:27017"
    19 }
    20 >

    分析:下面选择了几个我们比较关心的字段

    • cursor:BasicCursor表示是full Collection scan,即没有索引的全表扫描
    • n:满足查询条件的文档数量
    • nscannedObjects:总共扫描的文档的数量
    • nscanned:总共扫描的索引节点的数量
    • scanAndOrder:false表示,MongoDB现有索引下文档的顺序来返回排序结果;true表示,MongoDB需要在得到查询结果后重新排序
    • millis:完成查询需要的毫秒数

    添加索引,再次检查explain()的输出:

     1 > db.school.students.ensureIndex({"name": 1}, {"unique": true})
     2 > db.school.students.find({"name": "Will5"}).explain()
     3 {
     4         "cursor" : "BtreeCursor name_1",
     5         "isMultiKey" : false,
     6         "n" : 1,
     7         "nscannedObjects" : 1,
     8         "nscanned" : 1,
     9         "nscannedObjectsAllPlans" : 1,
    10         "nscannedAllPlans" : 1,
    11         "scanAndOrder" : false,
    12         "indexOnly" : false,
    13         "nYields" : 0,
    14         "nChunkSkips" : 0,
    15         "millis" : 0,
    16         "indexBounds" : {
    17                 "name" : [
    18                         [
    19                                 "Will5",
    20                                 "Will5"
    21                         ]
    22                 ]
    23         },
    24         "server" : "××××:27017"
    25 }
    26 >

    组合索引

    单键索引还是比较简单的,当使用组合索引的时候,就要多考虑一些了。自己也不确定能否总结的很好,如果错误,希望大家指出、讨论。

    索引建立可能有多种方式,我们的目标就是减少"nscanned"(当然也有特例,请参照"索引和排序")。

    下面分析基于前面生成的数据来分析一下组合索引,假设我们要查询年龄大于等于23的女学生。

    • 使用"age_1"索引的输出如下
       1 > db.school.students.find({"age":{"$gte":23}, "gender":"Female"}).hint("age_1").explain()
       2 {
       3         "cursor" : "BtreeCursor age_1",
       4         "isMultiKey" : false,
       5         "n" : 2,
       6         "nscannedObjects" : 4,
       7         "nscanned" : 4,
       8         "nscannedObjectsAllPlans" : 4,
       9         "nscannedAllPlans" : 4,
      10         "scanAndOrder" : false,
      11         "indexOnly" : false,
      12         "nYields" : 0,
      13         "nChunkSkips" : 0,
      14         "millis" : 0,
      15         "indexBounds" : {
      16                 "age" : [
      17                         [
      18                                 23,
      19                                 1.7976931348623157e+308
      20                         ]
      21                 ]
      22         },
      23         "server" : "××××:27017"
      24 }
      25 >

      索引的分析:

    Index

    Documents

    Result

    age:20

    { "name" : "Will1", "gender" : "Female", "age" : 20 }

    "n" : 2

    age:20

    { "name" : "Will5", "gender" : "Male", "age" : 20 }

    "nscannedObjects" : 4

    age:20

    { "name" : "Will6", "gender" : "Female", "age" : 20 }

    "nscanned" : 4

    age:21

    { "name" : "Will4", "gender" : "Male", "age" : 21 }

     

    age:21

    { "name" : "Will8", "gender" : "Male", "age" : 21 }

     

    age:22

    { "name" : "Will0", "gender" : "Female", "age" : 22 }

     

    age:23

    { "name" : "Will3", "gender" : "Male", "age" : 23 }

     

    age:24

    { "name" : "Will2", "gender" : "Male", "age" : 24 }

     

    age:24

    { "name" : "Will7", "gender" : "Female", "age" : 24 }

     

    age:24

    { "name" : "Will9", "gender" : "Female", "age" : 24 }

     

     

     

    • 使用"age_1_gender_1"索引的输出如下
       1 > db.school.students.find({"age":{"$gte":23}, "gender":"Female"}).hint("age_1_gender_1").explain()
       2 {
       3         "cursor" : "BtreeCursor age_1_gender_1",
       4         "isMultiKey" : false,
       5         "n" : 2,
       6         "nscannedObjects" : 2,
       7         "nscanned" : 4,
       8         "nscannedObjectsAllPlans" : 2,
       9         "nscannedAllPlans" : 4,
      10         "scanAndOrder" : false,
      11         "indexOnly" : false,
      12         "nYields" : 0,
      13         "nChunkSkips" : 0,
      14         "millis" : 0,
      15         "indexBounds" : {
      16                 "age" : [
      17                         [
      18                                 23,
      19                                 1.7976931348623157e+308
      20                         ]
      21                 ],
      22                 "gender" : [
      23                         [
      24                                 "Female",
      25                                 "Female"
      26                         ]
      27                 ]
      28         },
      29         "server" : "××××:27017"
      30 }
      31 >

      索引的分析:

    Index

    Documents

    Result

    age:20, gender:Female

    { "name" : "Will1", "gender" : "Female", "age" : 20 }

    "n" : 2

    age:20, gender:Female

    { "name" : "Will6", "gender" : "Female", "age" : 20 }

    "nscannedObjects" : 2

    age:20, gender:Male

    { "name" : "Will5", "gender" : "Male", "age" : 20 }

    "nscanned" : 4

    age:21, gender:Male

    { "name" : "Will4", "gender" : "Male", "age" : 21 }

     

    age:21, gender:Male

    { "name" : "Will8", "gender" : "Male", "age" : 21 }

     

    age:22, gender:Female

    { "name" : "Will0", "gender" : "Female", "age" : 22}

     

    age:23, gender:Male

    { "name" : "Will3", "gender" : "Male", "age" : 23 }

     

    age:24, gender:Female

    { "name" : "Will7", "gender" : "Female", "age" : 24 }

     

    age:24, gender:Female

    { "name" : "Will9", "gender" : "Female", "age" : 24 }

     

    age:24, gender:Male

    { "name" : "Will2", "gender" : "Male", "age" : 24 }

     

     

    • 使用"gender_1_age_1"索引的输出如下
       1 > db.school.students.find({"age":{"$gte":23}, "gender":"Female"}).hint("gender_1_age_1").explain()
       2 {
       3         "cursor" : "BtreeCursor gender_1_age_1",
       4         "isMultiKey" : false,
       5         "n" : 2,
       6         "nscannedObjects" : 2,
       7         "nscanned" : 2,
       8         "nscannedObjectsAllPlans" : 2,
       9         "nscannedAllPlans" : 2,
      10         "scanAndOrder" : false,
      11         "indexOnly" : false,
      12         "nYields" : 0,
      13         "nChunkSkips" : 0,
      14         "millis" : 0,
      15         "indexBounds" : {
      16                 "gender" : [
      17                         [
      18                                 "Female",
      19                                 "Female"
      20                         ]
      21                 ],
      22                 "age" : [
      23                         [
      24                                 23,
      25                                 1.7976931348623157e+308
      26                         ]
      27                 ]
      28         },
      29         "server" : "××××:27017"
      30 }
      31 >

      索引的分析:

    Index

    Documents

    Result

    gender:Female, age:20

    { "name" : "Will1", "gender" : "Female", "age" : 20 }

    "n" : 2

    gender:Female, age:20

    { "name" : "Will6", "gender" : "Female", "age" : 20 }

    "nscannedObjects" : 2

    gender:Female, age:22

    { "name" : "Will0", "gender" : "Female", "age" : 22 }

    "nscanned" : 2

    gender:Female, age:24

    { "name" : "Will7", "gender" : "Female", "age" : 24 }

     

    gender:Female, age:24

    { "name" : "Will9", "gender" : "Female", "age" : 24 }

     

    gender:Male, age:20

    { "name" : "Will5", "gender" : "Male", "age" : 20 }

     

    gender:Male, age:21

    { "name" : "Will4", "gender" : "Male", "age" : 21 }

     

    gender:Male, age:21

    { "name" : "Will8", "gender" : "Male", "age" : 21 }

     

    gender:Male, age:23

    { "name" : "Will3", "gender" : "Male", "age" : 23 }

     

    gender:Male, age:24

    { "name" : "Will2", "gender" : "Male", "age" : 24 }

     

     

    通过上面的例子可以看出,在使用组合索引的时候还是要考虑很多东西的,所以可以结合explain()来进行分析。

    索引选择机制

    由于我们前面创建了三个索引,下面我们直接使用默认查询。

     1 > db.school.students.find({"age":{"$gte":23}, "gender":"Female"}).explain()
     2 {
     3         "cursor" : "BtreeCursor gender_1_age_1",
     4         "isMultiKey" : false,
     5         "n" : 2,
     6         "nscannedObjects" : 2,
     7         "nscanned" : 2,
     8         "nscannedObjectsAllPlans" : 2,
     9         "nscannedAllPlans" : 2,
    10         "scanAndOrder" : false,
    11         "indexOnly" : false,
    12         "nYields" : 0,
    13         "nChunkSkips" : 0,
    14         "millis" : 0,
    15         "indexBounds" : {
    16                 "gender" : [
    17                         [
    18                                 "Female",
    19                                 "Female"
    20                         ]
    21                 ],
    22                 "age" : [
    23                         [
    24                                 23,
    25                                 1.7976931348623157e+308
    26                         ]
    27                 ]
    28         },
    29         "server" : "××××:27017"
    30 }
    31 >

    存在多条索引的情况下,MongoDB首选nscanned值最低的索引。

    索引和排序

    基于上面的例子,我们加上对"name"的排序操作。这时,我们可以看到"scanAndOrder"变成了"true"。

     1 > db.school.students.find({"age":{"$gte":23}, "gender":"Female"}).sort({"name":1}).explain()
     2 {
     3         "cursor" : "BtreeCursor gender_1_age_1",
     4         "isMultiKey" : false,
     5         "n" : 2,
     6         "nscannedObjects" : 2,
     7         "nscanned" : 2,
     8         "nscannedObjectsAllPlans" : 7,
     9         "nscannedAllPlans" : 9,
    10         "scanAndOrder" : true,
    11         "indexOnly" : false,
    12         "nYields" : 0,
    13         "nChunkSkips" : 0,
    14         "millis" : 0,
    15         "indexBounds" : {
    16                 "gender" : [
    17                         [
    18                                 "Female",
    19                                 "Female"
    20                         ]
    21                 ],
    22                 "age" : [
    23                         [
    24                                 23,
    25                                 1.7976931348623157e+308
    26                         ]
    27                 ]
    28         },
    29         "server" : "××××:27017"
    30 }

    在这个例子中,"nscanned"是最小的,所以这个方案是查询效率最高的。但是,我们要注意一下"scanAndOrder",根据MongoDB文档的解释,查询结果的排序不能利用现有的索引,MongoDB会把find找到的结果放入内存重新排序。这样的话,如果数据量很大,会对性能产生很大的影响。

    最好的办法是利用索引来进行排序。

    在这种情况下,就要加入一个"name"的索引,同时在find操作时使用hint来指定索引方式,因为默认情况MongoDB会选择"nscanned"最小的方式。

     1 > db.school.students.ensureIndex({"gender":1,"name":1})
     2 > db.school.students.find({"age":{"$gte":23}, "gender":"Female"}).sort({"name":1}).hint("gender_1_name_1").explain()
     3 {
     4         "cursor" : "BtreeCursor gender_1_name_1",
     5         "isMultiKey" : false,
     6         "n" : 2,
     7         "nscannedObjects" : 5,
     8         "nscanned" : 5,
     9         "nscannedObjectsAllPlans" : 5,
    10         "nscannedAllPlans" : 5,
    11         "scanAndOrder" : false,
    12         "indexOnly" : false,
    13         "nYields" : 0,
    14         "nChunkSkips" : 0,
    15         "millis" : 0,
    16         "indexBounds" : {
    17                 "gender" : [
    18                         [
    19                                 "Female",
    20                                 "Female"
    21                         ]
    22                 ],
    23                 "name" : [
    24                         [
    25                                 {
    26                                         "$minElement" : 1
    27                                 },
    28                                 {
    29                                         "$maxElement" : 1
    30                                 }
    31                         ]
    32                 ]
    33         },
    34         "server" : "xxxx:27017"
    35 }
    36 >

    通过这种方式,就可以利用索引的排序来避免"scanAndOrder"为true的情况。但是再看看上面的方式,似乎可以进一步优化,虽然不能减少"nscanned",但是可以减少"nscannedObjects"。

     1 > db.school.students.ensureIndex({"gender":1,"name":1,"age":1})
     2 > db.school.students.find({"age":{"$gte":23}, "gender":"Female"}).sort({"name":1}).hint("gender_1_name_1_age_1").explain()
     3 {
     4         "cursor" : "BtreeCursor gender_1_name_1_age_1",
     5         "isMultiKey" : false,
     6         "n" : 2,
     7         "nscannedObjects" : 2,
     8         "nscanned" : 5,
     9         "nscannedObjectsAllPlans" : 2,
    10         "nscannedAllPlans" : 5,
    11         "scanAndOrder" : false,
    12         "indexOnly" : false,
    13         "nYields" : 0,
    14         "nChunkSkips" : 0,
    15         "millis" : 0,
    16         "indexBounds" : {
    17                 "gender" : [
    18                         [
    19                                 "Female",
    20                                 "Female"
    21                         ]
    22                 ],
    23                 "name" : [
    24                         [
    25                                 {
    26                                         "$minElement" : 1
    27                                 },
    28                                 {
    29                                         "$maxElement" : 1
    30                                 }
    31                         ]
    32                 ],
    33                 "age" : [
    34                         [
    35                                 23,
    36                                 1.7976931348623157e+308
    37                         ]
    38                 ]
    39         },
    40         "server" : "xxxx:27017"
    41 }
    42 >

    总结

    MongoDB中,索引还有很多东西,本文只是通过一些例子来介绍了索引的使用,以及组合索引的简单分析

    Ps: 本文中所有例子中的命令都可以参考以下链接

    http://files.cnblogs.com/wilber2013/index.js

    作者:田小计划
    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。
    如果觉得不错,请点击推荐关注
  • 相关阅读:
    MongoDB--CSharp Driver Quickstart .
    关于 IIS7.0下文件写入无权限的解决办法
    Android和WCF通信
    要想有什么样的成就就要有什么样的眼光
    DateTime.Now.ToString() 用法
    机械硬盘怎么看是否4k对齐
    【.Net】在WinForm中选择本地文件
    【.Net】C#获取Windows系统特殊文件夹的路径
    【Python】Python网络编程
    【Asp.Net Core】在Visual Studio 2017中使用Asp.Net Core构建Angular4应用程序
  • 原文地址:https://www.cnblogs.com/wilber2013/p/4136318.html
Copyright © 2020-2023  润新知