Problem Description
Give you a sequence of N(N≤100,000) integers
: a1,...,an(0<ai≤1000,000,000) .
There are Q(Q≤100,000) queries.
For each query l,r you
have to calculate gcd(al,,al+1,...,ar) and
count the number of pairs(l′,r′)(1≤l<r≤N) such
that gcd(al′,al′+1,...,ar′) equal gcd(al,al+1,...,ar) .
Input
The first line of input contains a number T ,
which stands for the number of test cases you need to solve.
The first line of each case contains a numberN ,
denoting the number of integers.
The second line containsN integers, a1,...,an(0<ai≤1000,000,000) .
The third line contains a numberQ ,
denoting the number of queries.
For the nextQ lines,
i-th line contains two number , stand for the li,ri ,
stand for the i-th queries.
The first line of each case contains a number
The second line contains
The third line contains a number
For the next
Output
For each case, you need to output “Case #:t” at the beginning.(with quotes, t means
the number of the test case, begin from 1).
For each query, you need to output the two numbers in a line. The first number stands forgcd(al,al+1,...,ar) and
the second number stands for the number of pairs(l′,r′) such
that gcd(al′,al′+1,...,ar′) equal gcd(al,al+1,...,ar) .
For each query, you need to output the two numbers in a line. The first number stands for
Sample Input
1 5 1 2 4 6 7 4 1 5 2 4 3 4 4 4
Sample Output
Case #1: 1 8 2 4 2 4 6 1
Author
HIT
题目大意:
给你n个数,求l到r区间内的最大公约数ans,并且求任意区间的最大公约数为ans的数量
解题思路:
第一问很裸的RMQ问题,如果裸这个的话我认为是可以线段树搞的,不过洋少跟我说线段树会挂我就没写了。
第二问很蛋疼。我想了很久,看着官方题解想了很久。毕竟智商略低0.0其实很简单,对于从l到r这个区间,如果固定l区间,r区间不断变化的时候,gcd的值在不断下降,而且每次下降应该都不小于一半,那么这个下降速度是很快的。那么只需要枚举左端点l,然后二分l到n的区间,找到最大公约数为gcd的最大区间,然后记录这个gcd的数量,并且把gcd更新,这样时间复杂度能控制为nlog(a)
这道题还是很有意思的,值的推敲。
ps:写的时候sabi了一下,先计算区间个数了,然后计算的RMQ预处理。于是各种各样姿势的TLE,这比赛没法打了,,,,
代码:
#include <map> #include <cmath> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long LL; const int maxn = 1e5 + 5; int n; map<int, LL> mm; int a[maxn], dp[maxn][20]; int Scan() { int res = 0, flag = 0; char ch; if((ch = getchar()) == '-') flag = 1; else if(ch >= '0' && ch <= '9') res = ch - '0'; while((ch = getchar()) >= '0' && ch <= '9') res = res * 10 + (ch - '0'); return flag ? -res : res; } void Out(int a) { if(a < 0) { putchar('-'); a = -a; } if(a >= 10) Out(a / 10); putchar(a % 10 + '0'); } int gcd(int x, int y){ return y ? gcd(y, x % y) : x; } void ST(){ for(int j = 1; j < 18; ++j){ for(int i = 1; i <= n; ++i){ if(i + (1 << j) - 1 <= n){ dp[i][j] = gcd(dp[i][j-1], dp[i + (1 << (j-1))][j-1]); }else break; } } } int Find(int l, int r){ int k = (int)log2((double)(r - l + 1)); return gcd(dp[l][k], dp[r-(1<<k)+1][k]); } int main() { int t, q; t = Scan(); for(int cas = 1; cas <= t; ++cas){ n = Scan(); mm.clear(); for(int i = 1; i <= n; ++i){ a[i] = Scan(); dp[i][0] = a[i]; } ST(); for(int i = 1; i <= n; ++i){ int j = i, g = a[i]; while(j <= n){ int l = j, r = n; while(l < r){ int mid = (l + r) >> 1; if(Find(l, r) == g) l = mid + 1; else r = mid - 1; } mm[g] += l - j + 1; j = l + 1; g = gcd(g, a[j]); } } q = Scan(); printf("Case #%d: ", cas); while(q--){ int l, r; l = Scan(); r = Scan(); int ans = Find(l, r); printf("%d %I64d ",ans, mm[ans]); } } return 0; }