• HDU-5726 GCD


    Problem Description
    Give you a sequence of N(N100,000) integers : a1,...,an(0<ai1000,000,000). There are Q(Q100,000) queries. For each query l,r you have to calculate gcd(al,,al+1,...,ar) and count the number of pairs(l,r)(1l<rN)such that gcd(al,al+1,...,ar) equal gcd(al,al+1,...,ar).
     

    Input
    The first line of input contains a number T, which stands for the number of test cases you need to solve.

    The first line of each case contains a number N, denoting the number of integers.

    The second line contains N integers, a1,...,an(0<ai1000,000,000).

    The third line contains a number Q, denoting the number of queries.

    For the next Q lines, i-th line contains two number , stand for the li,ri, stand for the i-th queries.
     

    Output
    For each case, you need to output “Case #:t” at the beginning.(with quotes, t means the number of the test case, begin from 1).

    For each query, you need to output the two numbers in a line. The first number stands for gcd(al,al+1,...,ar) and the second number stands for the number of pairs(l,r) such that gcd(al,al+1,...,ar) equal gcd(al,al+1,...,ar).
     

    Sample Input
    1 5 1 2 4 6 7 4 1 5 2 4 3 4 4 4
     

    Sample Output
    Case #1: 1 8 2 4 2 4 6 1
     

    Author
    HIT

    题目大意:

    给你n个数,求l到r区间内的最大公约数ans,并且求任意区间的最大公约数为ans的数量

    解题思路:

    第一问很裸的RMQ问题,如果裸这个的话我认为是可以线段树搞的,不过洋少跟我说线段树会挂我就没写了。

    第二问很蛋疼。我想了很久,看着官方题解想了很久。毕竟智商略低0.0其实很简单,对于从l到r这个区间,如果固定l区间,r区间不断变化的时候,gcd的值在不断下降,而且每次下降应该都不小于一半,那么这个下降速度是很快的。那么只需要枚举左端点l,然后二分l到n的区间,找到最大公约数为gcd的最大区间,然后记录这个gcd的数量,并且把gcd更新,这样时间复杂度能控制为nlog(a)

    这道题还是很有意思的,值的推敲。

    ps:写的时候sabi了一下,先计算区间个数了,然后计算的RMQ预处理。于是各种各样姿势的TLE,这比赛没法打了,,,,

    代码:

    #include <map>
    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    
    typedef long long LL;
    
    const int maxn = 1e5 + 5;
    
    int n;
    map<int, LL> mm;
    int a[maxn], dp[maxn][20];
    
    int Scan() {
        int res = 0, flag = 0;
        char ch;
        if((ch = getchar()) == '-') flag = 1;
        else if(ch >= '0' && ch <= '9') res = ch - '0';
        while((ch = getchar()) >= '0' && ch <= '9')
            res = res * 10 + (ch - '0');
        return flag ? -res : res;
    }
    void Out(int a) {
        if(a < 0) { putchar('-'); a = -a; }
        if(a >= 10) Out(a / 10);
        putchar(a % 10 + '0');
    }
    int gcd(int x, int y){
        return y ? gcd(y, x % y) : x;
    }
    void ST(){
        for(int j = 1; j < 18; ++j){
            for(int i = 1; i <= n; ++i){
                if(i + (1 << j) - 1 <= n){
                    dp[i][j] = gcd(dp[i][j-1], dp[i + (1 << (j-1))][j-1]);
                }else break;
    		}
    	}
    }
    int Find(int l, int r){
        int k = (int)log2((double)(r - l + 1));
        return gcd(dp[l][k], dp[r-(1<<k)+1][k]);
    }
    int main()
    {
        int t, q;
        t = Scan();
        for(int cas = 1; cas <= t; ++cas){
            n = Scan();
            mm.clear();
            for(int i = 1; i <= n; ++i){
                a[i] = Scan();
                dp[i][0] = a[i];
            }
    
            ST();
            for(int i = 1; i <= n; ++i){
                int j = i, g = a[i];
                while(j <= n){
                    int l = j, r = n;
                    while(l < r){
                        int mid = (l + r) >> 1;
                        if(Find(l, r) == g) l = mid + 1;
                        else r = mid - 1;
                    }
                    mm[g] += l - j + 1;
                    j = l + 1;
                    g = gcd(g, a[j]);
                }
            }
    
            q = Scan();
            printf("Case #%d:
    ", cas);
            while(q--){
                int l, r;
                l = Scan(); r = Scan();
    
                int ans = Find(l, r);
                printf("%d %I64d
    ",ans, mm[ans]);
            }
        }
    	return 0;
    }
    


  • 相关阅读:
    关于重构的一些方法
    java基础 逻辑
    java基础
    去重和数组排序
    表单验证
    JS实例5
    window.document对象
    JS实例4
    JS实例3
    JS实例2
  • 原文地址:https://www.cnblogs.com/wiklvrain/p/8179451.html
Copyright © 2020-2023  润新知