• POJ 3264 Balanced Lineup (线段树||RMQ)


    A - Balanced Lineup
    Crawling in process... Crawling failed Time Limit:5000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q.
    Lines 2.. N+1: Line i+1 contains a single integer that is the height of cow i
    Lines N+2.. N+ Q+1: Two integers A and B (1 ≤ ABN), representing the range of cows from A to B inclusive.

    Output

    Lines 1.. Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    题目大意:

      这道题是说,给你n个数字(n<=50000),然后Q( Q<=2*100000)个询问,在每个询问的区间中,最大值和最小值的差值是多少?

    解题思路:

      直接用线段树就可以过,每个节点对应一个区间,直接logn的时间查询最大值和最小值,然后通过两者之间的差值就可以得到最后的结果。

    代码:

     1 # include<cstdio>
     2 # include<iostream>
     3 
     4 using namespace std;
     5 
     6 # define MAX 50004
     7 # define lid id<<1
     8 # define rid id<<1|1
     9 
    10 struct Segtree
    11 {
    12     int l,r;
    13     int mx,mn;
    14 }tree[MAX*4];
    15 int a[MAX];
    16 
    17 void push_up( int id )
    18 {
    19     tree[id].mx = max(tree[lid].mx,tree[rid].mx);
    20     tree[id].mn = min(tree[lid].mn,tree[rid].mn);
    21 }
    22 
    23 void build( int id,int l,int r )
    24 {
    25     tree[id].l = l; tree[id].r = r;
    26     if ( l==r )
    27     {
    28         tree[id].mx = tree[id].mn = a[l];
    29         return;
    30     }
    31     int mid = ( tree[id].l+tree[id].r )/2;
    32     build(lid,l,mid);
    33     build(rid,mid+1,r);
    34     push_up(id);
    35 }
    36 
    37 int query1( int id,int l,int r )
    38 {
    39     if ( tree[id].l==l&&tree[id].r==r )
    40     {
    41         return tree[id].mx;
    42     }
    43     int mid = ( tree[id].l+tree[id].r )/2;
    44     if ( r <= mid )
    45         return query1(lid,l,r);
    46     else if ( l > mid )
    47         return query1(rid,l,r);
    48     else
    49     {
    50         return max(query1(lid,l,mid),query1(rid,mid+1,r));
    51     }
    52 }
    53 
    54 int query2( int id,int l,int r )
    55 {
    56     if ( tree[id].l==l&&tree[id].r==r )
    57     {
    58         return tree[id].mn;
    59     }
    60     int mid = ( tree[id].l+tree[id].r )/2;
    61     if ( r <= mid )
    62         return query2(lid,l,r);
    63     else if ( l > mid )
    64         return query2(rid,l,r);
    65     else
    66     {
    67         return min(query2(lid,l,mid),query2(rid,mid+1,r));
    68     }
    69 }
    70 
    71 
    72 int main(void)
    73 {
    74     int n; scanf("%d",&n);
    75     int q; scanf("%d",&q);
    76     for ( int i = 1;i <= n;i++ )
    77     {
    78         scanf("%d",&a[i]);
    79     }
    80     build(1,1,n);
    81     while ( q-- )
    82     {
    83         int t1,t2; scanf("%d%d",&t1,&t2);
    84         int ans = query1(1,t1,t2)-query2(1,t1,t2);
    85         printf("%d
    ",ans);
    86     }
    87 
    88 
    89     return 0;
    90 }
  • 相关阅读:
    存储类&作用域&生命周期&链接属性
    关于mysql数据库的备份和还原
    Centos 7下mysql的安装与配置
    基于Apache+php+mysql的许愿墙网站的搭建
    关于php留言本网站的搭建
    linux下面桌面的安装
    时间同步ntp服务的安装与配置
    通过挂载系统光盘搭建本地yum仓库的方法
    linux系统root用户忘记密码的重置方法
    linux系统的初化始配置
  • 原文地址:https://www.cnblogs.com/wikioibai/p/4811259.html
Copyright © 2020-2023  润新知