• Codeforces 1043 F


    F - Make It One

    思路:

    dp + 容斥

    首先, 答案不会超过7, 因为前7个质数的乘积大于3e5(最坏的情况是7个数, 每个数都缺少一个不同的因子)

    所以从1到7依次考虑

    dp[i][j]: 表示选取i个数且gcd==j的方案数

    dp[i][j] = C(cntj, i) - ∑dp[i][k] (其中cntj表示ai中是j的倍数的个数, k表示所有j的倍数)

    代码:

    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #pragma GCC optimize(4)
    #include<bits/stdc++.h>
    using namespace std;
    #define fi first
    #define se second
    #define pi acos(-1.0)
    #define LL long long
    //#define mp make_pair
    #define pb push_back
    #define ls rt<<1, l, m
    #define rs rt<<1|1, m+1, r
    #define ULL unsigned LL
    #define pll pair<LL, LL>
    #define pli pair<LL, int>
    #define pii pair<int, int>
    #define piii pair<pii, int>
    #define mem(a, b) memset(a, b, sizeof(a))
    #define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    #define fopen freopen("in.txt", "r", stdin);freopen("out.txt", "w", stout);
    //head
    
    const int N = 3e5 + 5;
    const int MOD = 1e9 + 7;
    int a[N], cnt[N], mul_of[N];
    int dp[10][N];
    int fac[N], invfac[N];
    LL q_pow(LL n, LL k) {
        LL res = 1;
        while(k) {
            if(k&1) res = (res * n) % MOD;
            n = (n * n) % MOD;
            k >>= 1;
        }
        return res;
    }
    void init() {
        fac[0] = 1;
        for (int i = 1; i < N; i++) fac[i] = (1LL * fac[i-1] * i) % MOD;
        invfac[N-1] = q_pow(fac[N-1], MOD-2);
        for (int i = N-2; i >= 0; i--) invfac[i] = (1LL * invfac[i+1] * (i+1)) % MOD;
    }
    LL C(int n, int m) {
        if(n < m) return 0;
        return (1LL * fac[n] * invfac[m]) % MOD * invfac[n-m] % MOD;
    }
    int main() {
        int n;
        init();
        scanf("%d", &n);
        for (int i = 1; i <= n; i++) scanf("%d", &a[i]), cnt[a[i]]++;
        for (int i = 1; i < N; i++) {
            for (int j = i; j < N; j += i) {
                mul_of[i] += cnt[j];
            }
        }
        for (int i = 1; i <= 7; i++) {
            for (int j = N-1; j > 0; j--) {
                int sum = 0;
                for (int k = 2*j; k < N; k += j) sum = (sum + dp[i][k]) % MOD;
                dp[i][j] = (C(mul_of[j], i) - sum) % MOD;
            }
            if(dp[i][1]) {
                printf("%d
    ", i);
                return 0;
            }
        }
        printf("-1
    ");
        return 0;
    }
  • 相关阅读:
    nioSocket
    Socket
    常见协议和标准
    Object类clone方法
    java中的运算符
    java中方法的定义
    Spring中实现定时调度
    Spring中对资源的读取支持
    HashMap的实现原理
    固定Realm 与配置数据库连接实现登录验证
  • 原文地址:https://www.cnblogs.com/widsom/p/9947242.html
Copyright © 2020-2023  润新知