思路:
区间dp
dp[l][r]表示ƒ([l, r])的值
显然,状态转移方程为dp[l][r] = dp[l][r-1] ^ dp[l+1][r]
初始状态dp[i][i] = a[i]
可是,这道题求的是这段区间包含的某一连续区间的最大值
那么用差不多的转移方程再求一遍区间最大值:dp[l][r] = max(dp[l][r],dp[l][r-1],dp[l+1][r])
代码:
#include<bits/stdc++.h> using namespace std; #define LL long long #define pb push_back #define mem(a, b) memset(a, b, sizeof(a)) const int N = 5e3 + 5; int dp[N][N], a[N]; int main() { int n, q, l, r; scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); for (int i = n; i >= 1; i--) { dp[i][i] = a[i]; for (int j = i+1; j <= n; j++) { dp[i][j] = dp[i][j-1] ^ dp[i+1][j]; } } for (int i = n; i >= 1; i--) { for (int j = i+1; j <= n; j++) { dp[i][j] = max(dp[i][j], max(dp[i][j-1], dp[i+1][j])); } } scanf("%d", &q); while(q--) { scanf("%d %d", &l, &r); printf("%d ", dp[l][r]); } return 0; }