• 杜教的板子


    拉格朗日插值:

    /// 注意mod,使用前须调用一次 polysum::init(int M);
    namespace polysum {
        #define rep(i,a,n) for (int i=a;i<n;i++)
        #define per(i,a,n) for (int i=n-1;i>=a;i--)
        typedef long long ll;
        const ll mod=1e9+7; /// 取模值
        ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
    
        const int D=101000; /// 最高次限制
        ll a[D],f[D],g[D],p[D],p1[D],p2[D],b[D],h[D][2],C[D];
        ll calcn(int d,ll *a,ll n) {
            if (n<=d) return a[n];
            p1[0]=p2[0]=1;
            rep(i,0,d+1) {
                ll t=(n-i+mod)%mod;
                p1[i+1]=p1[i]*t%mod;
            }
            rep(i,0,d+1) {
                ll t=(n-d+i+mod)%mod;
                p2[i+1]=p2[i]*t%mod;
            }
            ll ans=0;
            rep(i,0,d+1) {
                ll t=g[i]*g[d-i]%mod*p1[i]%mod*p2[d-i]%mod*a[i]%mod;
                if ((d-i)&1) ans=(ans-t+mod)%mod;
                else ans=(ans+t)%mod;
            }
            return ans;
        }
        void init(int M) { /// M:最高次
            f[0]=f[1]=g[0]=g[1]=1;
            rep(i,2,M+5) f[i]=f[i-1]*i%mod;
            g[M+4]=powmod(f[M+4],mod-2);
            per(i,1,M+4) g[i]=g[i+1]*(i+1)%mod;
        }
        ll polysum(ll n,ll *arr,ll m) { // a[0].. a[m] sum_{i=0}^{n} a[i]
            for(int i = 0; i <= m; i++) a[i] = arr[i];
            a[m+1]=calcn(m,a,m+1);
            rep(i,1,m+2) a[i]=(a[i-1]+a[i])%mod;
            return calcn(m+1,a,n);
        }
        ll qpolysum(ll R,ll n,ll *a,ll m) { // a[0].. a[m] sum_{i=0}^{n-1} a[i]*R^i
            if (R==1) return polysum(n,a,m);
            a[m+1]=calcn(m,a,m+1);
            ll r=powmod(R,mod-2),p3=0,p4=0,c,ans;
            h[0][0]=0;h[0][1]=1;
            rep(i,1,m+2) {
                h[i][0]=(h[i-1][0]+a[i-1])*r%mod;
                h[i][1]=h[i-1][1]*r%mod;
            }
            rep(i,0,m+2) {
                ll t=g[i]*g[m+1-i]%mod;
                if (i&1) p3=((p3-h[i][0]*t)%mod+mod)%mod,p4=((p4-h[i][1]*t)%mod+mod)%mod;
                else p3=(p3+h[i][0]*t)%mod,p4=(p4+h[i][1]*t)%mod;
            }
            c=powmod(p4,mod-2)*(mod-p3)%mod;
            rep(i,0,m+2) h[i][0]=(h[i][0]+h[i][1]*c)%mod;
            rep(i,0,m+2) C[i]=h[i][0];
            ans=(calcn(m,C,n)*powmod(R,n)-c)%mod;
            if (ans<0) ans+=mod;
            return ans;
        }
    }

    例题:https://ac.nowcoder.com/acm/contest/139/F?&headNav=www

    代码:

    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #pragma GCC optimize(4)
    #include<bits/stdc++.h>
    using namespace std;
    #define y1 y11
    #define fi first
    #define se second
    #define pi acos(-1.0)
    #define LL long long
    #define ls rt<<1, l, m
    #define rs rt<<1|1, m+1, r
    //#define mp make_pair
    #define pb push_back
    #define ULL unsigned LL
    #define pll pair<LL, LL>
    #define pli pair<LL, int>
    #define pii pair<int, int>
    #define piii pair<pii, int>
    #define pdi pair<double, int>
    #define pdd pair<double, double>
    #define mem(a, b) memset(a, b, sizeof(a))
    #define debug(x) cerr << #x << " = " << x << "
    ";
    #define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    //head
    
    
    const int N = 1e3 + 5;
    const int MOD = 1e9 + 7;
    int a[N], n;
    LL b[N];
    /// 注意mod,使用前须调用一次 polysum::init(int M);
    namespace polysum {
        #define rep(i,a,n) for (int i=a;i<n;i++)
        #define per(i,a,n) for (int i=n-1;i>=a;i--)
        typedef long long ll;
        const ll mod=1e9+7; /// 取模值
        ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
    
        const int D=101000; /// 最高次限制
        ll a[D],f[D],g[D],p[D],p1[D],p2[D],b[D],h[D][2],C[D];
        ll calcn(int d,ll *a,ll n) {
            if (n<=d) return a[n];
            p1[0]=p2[0]=1;
            rep(i,0,d+1) {
                ll t=(n-i+mod)%mod;
                p1[i+1]=p1[i]*t%mod;
            }
            rep(i,0,d+1) {
                ll t=(n-d+i+mod)%mod;
                p2[i+1]=p2[i]*t%mod;
            }
            ll ans=0;
            rep(i,0,d+1) {
                ll t=g[i]*g[d-i]%mod*p1[i]%mod*p2[d-i]%mod*a[i]%mod;
                if ((d-i)&1) ans=(ans-t+mod)%mod;
                else ans=(ans+t)%mod;
            }
            return ans;
        }
        void init(int M) { /// M:最高次
            f[0]=f[1]=g[0]=g[1]=1;
            rep(i,2,M+5) f[i]=f[i-1]*i%mod;
            g[M+4]=powmod(f[M+4],mod-2);
            per(i,1,M+4) g[i]=g[i+1]*(i+1)%mod;
        }
        ll polysum(ll n,ll *arr,ll m) { // a[0].. a[m] sum_{i=0}^{n-1} a[i]
            for(int i = 0; i <= m; i++) a[i] = arr[i];
            a[m+1]=calcn(m,a,m+1);
            rep(i,1,m+2) a[i]=(a[i-1]+a[i])%mod;
            return calcn(m+1,a,n);
        }
        ll qpolysum(ll R,ll n,ll *a,ll m) { // a[0].. a[m] sum_{i=0}^{n-1} a[i]*R^i
            if (R==1) return polysum(n,a,m);
            a[m+1]=calcn(m,a,m+1);
            ll r=powmod(R,mod-2),p3=0,p4=0,c,ans;
            h[0][0]=0;h[0][1]=1;
            rep(i,1,m+2) {
                h[i][0]=(h[i-1][0]+a[i-1])*r%mod;
                h[i][1]=h[i-1][1]*r%mod;
            }
            rep(i,0,m+2) {
                ll t=g[i]*g[m+1-i]%mod;
                if (i&1) p3=((p3-h[i][0]*t)%mod+mod)%mod,p4=((p4-h[i][1]*t)%mod+mod)%mod;
                else p3=(p3+h[i][0]*t)%mod,p4=(p4+h[i][1]*t)%mod;
            }
            c=powmod(p4,mod-2)*(mod-p3)%mod;
            rep(i,0,m+2) h[i][0]=(h[i][0]+h[i][1]*c)%mod;
            rep(i,0,m+2) C[i]=h[i][0];
            ans=(calcn(m,C,n)*powmod(R,n)-c)%mod;
            if (ans<0) ans+=mod;
            return ans;
        }
    }
    int main() {
        polysum::init(N);
        while(~scanf("%d", &n)) {
            for (int i = 1; i <= n; ++i) scanf("%d", &a[i]);
            sort(a+1, a+1+n);
            LL pre = 1, ans = 0;
            for (int i = 1; i <= n; ++i) {
                b[0] = 0;
                for (int j = 1; j <= n-i+1; ++j) b[j] = (j*(polysum::powmod(j, n-i+1) - polysum::powmod(j-1, n-i+1))) % MOD;
                ans = (ans + pre*(polysum::polysum(a[i], b, n-i+1) - polysum::polysum(a[i-1], b, n-i+1))%MOD )%MOD;
                pre = (pre * a[i]) % MOD;
            }
            printf("%lld
    ", (ans + MOD) % MOD);
        }
        return 0;
    }
    View Code

     杜教BM:

    namespace linear_seq {
        const int N=10010;
        #define rep(i,a,n) for (int i=a;i<n;i++)
        #define per(i,a,n) for (int i=n-1;i>=a;i--)
        #define mp make_pair
        #define all(x) (x).begin(),(x).end()
        #define SZ(x) ((int)(x).size())
        typedef vector<ll> VI;
        typedef pair<ll,ll> PII;
        ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
        ll res[N],base[N],_c[N],_md[N];
        vector<ll> Md;
        void mul(ll *a,ll *b,int k) {
            rep(i,0,k+k) _c[i]=0;
            rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
            for (int i=k+k-1;i>=k;i--) if (_c[i])
                rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
            rep(i,0,k) a[i]=_c[i];
        }
        ll solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
    //        printf("%d
    ",SZ(b));
            ll ans=0,pnt=0;
            int k=SZ(a);
            assert(SZ(a)==SZ(b));
            rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
            Md.clear();
            rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
            rep(i,0,k) res[i]=base[i]=0;
            res[0]=1;
            while ((1ll<<pnt)<=n) pnt++;
            for (int p=pnt;p>=0;p--) {
                mul(res,res,k);
                if ((n>>p)&1) {
                    for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
                    rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
                }
            }
            rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
            if (ans<0) ans+=mod;
            return ans;
        }
        VI BM(VI s) {
            VI C(1,1),B(1,1);
            int L=0,m=1,b=1;
            rep(n,0,SZ(s)) {
                ll d=0;
                rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
                if (d==0) ++m;
                else if (2*L<=n) {
                    VI T=C;
                    ll c=mod-d*powmod(b,mod-2)%mod;
                    while (SZ(C)<SZ(B)+m) C.pb(0);
                    rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                    L=n+1-L; B=T; b=d; m=1;
                } else {
                    ll c=mod-d*powmod(b,mod-2)%mod;
                    while (SZ(C)<SZ(B)+m) C.pb(0);
                    rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                    ++m;
                }
            }
            return C;
        }
        ll gao(VI a,ll n) {
            VI c=BM(a);
            c.erase(c.begin());
            rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
            return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
        }
    };

    模数不为质数:https://blog.csdn.net/qq_40858062/article/details/82919667

    有递推式直接输入初始值和系数,不然打表打出前几项丢进去跑

    例题:D - Magic Gems 

    代码:

    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #pragma GCC optimize(4)
    #include<bits/stdc++.h>
    using namespace std;
    #define y1 y11
    #define fi first
    #define se second
    #define pi acos(-1.0)
    #define LL long long
    #define ll long long
    #define ls rt<<1, l, m
    #define rs rt<<1|1, m+1, r
    //#define mp make_pair
    #define pb push_back
    #define ULL unsigned LL
    #define pll pair<LL, LL>
    #define pli pair<LL, int>
    #define plii pair<LL,pii>
    #define pii pair<int, int>
    #define piii pair<pii, pii>
    #define pdi pair<double, int>
    #define pdd pair<double, double>
    #define mem(a, b) memset(a, b, sizeof(a))
    #define debug(x) cerr << #x << " = " << x << "
    ";
    #define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    //head
    
    const int mod = 1e9 + 7;
    namespace linear_seq {
        const int N=10010;
        #define rep(i,a,n) for (int i=a;i<n;i++)
        #define per(i,a,n) for (int i=n-1;i>=a;i--)
        #define mp make_pair
        #define all(x) (x).begin(),(x).end()
        #define SZ(x) ((int)(x).size())
        typedef vector<ll> VI;
        typedef pair<ll,ll> PII;
        ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
        ll res[N],base[N],_c[N],_md[N];
        vector<ll> Md;
        void mul(ll *a,ll *b,int k) {
            rep(i,0,k+k) _c[i]=0;
            rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
            for (int i=k+k-1;i>=k;i--) if (_c[i])
                rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
            rep(i,0,k) a[i]=_c[i];
        }
        ll solve(ll n,VI a,VI b) { /// a 系数 b 初值 b[n+1]=a[0]*b[n]+...
    ///        printf("%d
    ",SZ(b));
            ll ans=0,pnt=0;
            int k=SZ(a);
            assert(SZ(a)==SZ(b));
            rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
            Md.clear();
            rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
            rep(i,0,k) res[i]=base[i]=0;
            res[0]=1;
            while ((1ll<<pnt)<=n) pnt++;
            for (int p=pnt;p>=0;p--) {
                mul(res,res,k);
                if ((n>>p)&1) {
                    for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
                    rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
                }
            }
            rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
            if (ans<0) ans+=mod;
            return ans;
        }
        VI BM(VI s) {
            VI C(1,1),B(1,1);
            int L=0,m=1,b=1;
            rep(n,0,SZ(s)) {
                ll d=0;
                rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
                if (d==0) ++m;
                else if (2*L<=n) {
                    VI T=C;
                    ll c=mod-d*powmod(b,mod-2)%mod;
                    while (SZ(C)<SZ(B)+m) C.pb(0);
                    rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                    L=n+1-L; B=T; b=d; m=1;
                } else {
                    ll c=mod-d*powmod(b,mod-2)%mod;
                    while (SZ(C)<SZ(B)+m) C.pb(0);
                    rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                    ++m;
                }
            }
            return C;
        }
        ll gao(VI a,ll n) {
            VI c=BM(a);
            c.erase(c.begin());
            rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
            return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
        }
    };
    LL n, m;
    int main() {
        scanf("%lld %d", &n, &m);
        vector<LL> a(m, 0);
        a[0] = a[m-1] = 1;
        vector<LL> b(m, 1);
        printf("%lld
    ", linear_seq::solve(n, a, b));
        return 0;
    }
    View Code

     双hash:

    typedef pair<int,int> hashv;
    const LL mod1=1000000007;
    const LL mod2=1000000009;
    hashv operator + (hashv a,hashv b) {
        int c1=a.fi+b.fi,c2=a.se+b.se;
        if (c1>=mod1) c1-=mod1;
        if (c2>=mod2) c2-=mod2;
        return {c1,c2};
    }
    hashv operator - (hashv a,hashv b) {
        int c1=a.fi-b.fi,c2=a.se-b.se;
        if (c1<0) c1+=mod1;
        if (c2<0) c2+=mod2;
        return {c1,c2};
    }
    hashv operator * (hashv a,hashv b) {
        return {1LL*a.fi*b.fi%mod1,1LL*a.se*b.se%mod2};
    }
    hashv h[N], p[N];
    hashv get_hash(int l, int r) {
        return h[r]-h[l-1]*p[r-l+1];
    }

    例题:E - Check Transcription

    代码:

    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #pragma GCC optimize(4)
    #include<bits/stdc++.h>
    using namespace std;
    #define y1 y11
    #define fi first
    #define se second
    #define pi acos(-1.0)
    #define LL long long
    //#define mp make_pair
    #define pb push_back
    #define ls rt<<1, l, m
    #define rs rt<<1|1, m+1, r
    #define ULL unsigned LL
    #define pll pair<LL, LL>
    #define pli pair<LL, int>
    #define pii pair<int, int>
    #define piii pair<int, pii>
    #define puu pair<ULL, ULL>
    #define pdd pair<long double, long double>
    #define mem(a, b) memset(a, b, sizeof(a))
    #define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    #define fopen freopen("in.txt", "r", stdin);freopen("out.txt", "w", stout);
    //head
    
    
    const int N = 1e6 + 5;
    typedef pair<int, int> hashv;
    const LL mod1=1000000007;
    const LL mod2=1000000009;
    hashv operator + (hashv a,hashv b) {
        int c1=a.fi+b.fi,c2=a.se+b.se;
        if (c1>=mod1) c1-=mod1;
        if (c2>=mod2) c2-=mod2;
        return {c1,c2};
    }
    hashv operator - (hashv a,hashv b) {
        int c1=a.fi-b.fi,c2=a.se-b.se;
        if (c1<0) c1+=mod1;
        if (c2<0) c2+=mod2;
        return {c1,c2};
    }
    hashv operator * (hashv a,hashv b) {
        return {1LL*a.fi*b.fi%mod1,1LL*a.se*b.se%mod2};
    }
    hashv h[N], p[N], base = {31, 47};
    hashv get_hash(int l, int r) {
        return h[r]-h[l-1]*p[r-l+1];
    }
    char s[N], t[N];
    int n, m, c0 = 0, c1 = 0;
    int main() {
        scanf("%s", s+1); scanf("%s", t+1);
        n = strlen(s+1); m = strlen(t+1);
        for (int i = 1; i <= n; ++i) if(s[i] == '0') c0++; else c1++;
        p[0] = {1, 1};
        h[0] = {0, 0};
        for (int i = 1; i <= m; ++i) h[i] = h[i-1]*base + hashv{t[i]-'a'+1, t[i]-'a'+1}, p[i] = p[i-1]*base;
        int ans = 0;
        if(c0 == 0) {
            if(m%c1 == 0) {
                hashv h = {0, 0};
                bool f = true;
                for (int i = c1; i <= m; i += c1) {
                    if(h.fi == 0) h = get_hash(i-c1+1, i);
                    else {
                        if(get_hash(i-c1+1, i) != h) {
                            f = false;
                            break;
                        }
                    }
                }
                if(f) ans++;
            }
        }
        else if(c1 == 0) {
            if(m%c0 == 0) {
                hashv h = {0, 0};
                bool f = true;
                for (int i = c0; i <= m; i += c0) {
                    if(h.fi == 0) h = get_hash(i-c0+1, i);
                    else {
                        if(get_hash(i-c0+1, i) != h) {
                            f = false;
                            break;
                        }
                    }
                }
                if(f) ans++;
            }
        }
        else {
            for (int i = 1; i*c1 < m; ++i) {
                if((m-i*c1)%c0 == 0) {
                    bool f = true;
                    int l1 = i, l0 = (m-i*c1)/c0;
                    hashv h0 = {0, 0}, h1 = {0, 0};
                    int now = 1;
                    for (int i = 1; i <= n; ++i) {
                        if(s[i] == '0') {
                            if(h0.fi == 0) h0 = get_hash(now, now+l0-1);
                            else {
                                if(get_hash(now, now+l0-1) != h0) {
                                    f = false;
                                    break;
                                }
                            }
                            now += l0;
                        }
                        else {
                            if(h1.fi == 0) h1 = get_hash(now, now+l1-1);
                            else {
                                if(get_hash(now, now+l1-1) != h1) {
                                    f = false;
                                    break;
                                }
                            }
                            now += l1;
                        }
                    }
                    if(f && h0 != h1) ans++;
                }
            }
        }
        printf("%d
    ", ans);
        return 0;
    }
    View Code

    Montgomery Modular Multiplication:

    #define rep(i,a,n) for (int i=a;i<n;i++)
    typedef long long ll;
    typedef unsigned long long u64;
    typedef __int128_t i128;
    typedef __uint128_t u128;
    struct Mod64 {
    
        Mod64():n_(0) {}
        Mod64(u64 n):n_(init(n)) {}
        static u64 init(u64 w) { return reduce(u128(w) * r2); }
        static void set_mod(u64 m) {
            mod=m; assert(mod&1);
            inv=m; rep(i,0,5) inv*=2-inv*m;
            r2=-u128(m)%m;
        }
        static u64 reduce(u128 x) {
            u64 y=u64(x>>64)-u64((u128(u64(x)*inv)*mod)>>64);
            return ll(y)<0?y+mod:y;
        }
        Mod64& operator += (Mod64 rhs) { n_+=rhs.n_-mod; if (ll(n_)<0) n_+=mod; return *this; }
        Mod64 operator + (Mod64 rhs) const { return Mod64(*this)+=rhs; }
        Mod64& operator -= (Mod64 rhs) { n_-=rhs.n_; if (ll(n_)<0) n_+=mod; return *this; }
        Mod64 operator - (Mod64 rhs) const { return Mod64(*this)-=rhs; }
        Mod64& operator *= (Mod64 rhs) { n_=reduce(u128(n_)*rhs.n_); return *this; }
        Mod64 operator * (Mod64 rhs) const { return Mod64(*this)*=rhs; }
        u64 get() const { return reduce(n_); }
        static u64 mod,inv,r2;
        u64 n_;
    };
    u64 Mod64::mod,Mod64::inv,Mod64::r2;

    参考资料min25博客: https://min-25.hatenablog.com/entry/2017/08/20/171214

    例题:电音之王

    代码:

    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #pragma GCC optimize(4)
    #include<bits/stdc++.h>
    using namespace std;
    #define y1 y11
    #define fi first
    #define se second
    #define pi acos(-1.0)
    #define LL long long
    //#define mp make_pair
    #define pb push_back
    #define ls rt<<1, l, m
    #define rs rt<<1|1, m+1, r
    #define ULL unsigned LL
    #define pll pair<LL, LL>
    #define pli pair<LL, int>
    #define pii pair<int, int>
    #define piii pair<int, pii>
    #define puu pair<ULL, ULL>
    #define pdd pair<long double, long double>
    #define mem(a, b) memset(a, b, sizeof(a))
    #define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    #define fopen freopen("in.txt", "r", stdin);freopen("out.txt", "w", stout);
    //head
    
    #define rep(i,a,n) for (int i=a;i<n;i++)
    typedef long long ll;
    typedef unsigned long long u64;
    typedef __int128_t i128;
    typedef __uint128_t u128;
    struct Mod64 {
    
        Mod64():n_(0) {}
        Mod64(u64 n):n_(init(n)) {}
        static u64 init(u64 w) { return reduce(u128(w) * r2); }
        static void set_mod(u64 m) {
            mod=m; assert(mod&1);
            inv=m; rep(i,0,5) inv*=2-inv*m;
            r2=-u128(m)%m;
        }
        static u64 reduce(u128 x) {
            u64 y=u64(x>>64)-u64((u128(u64(x)*inv)*mod)>>64);
            return ll(y)<0?y+mod:y;
        }
        Mod64& operator += (Mod64 rhs) { n_+=rhs.n_-mod; if (ll(n_)<0) n_+=mod; return *this; }
        Mod64 operator + (Mod64 rhs) const { return Mod64(*this)+=rhs; }
        Mod64& operator -= (Mod64 rhs) { n_-=rhs.n_; if (ll(n_)<0) n_+=mod; return *this; }
        Mod64 operator - (Mod64 rhs) const { return Mod64(*this)-=rhs; }
        Mod64& operator *= (Mod64 rhs) { n_=reduce(u128(n_)*rhs.n_); return *this; }
        Mod64 operator * (Mod64 rhs) const { return Mod64(*this)*=rhs; }
        u64 get() const { return reduce(n_); }
        static u64 mod,inv,r2;
        u64 n_;
    };
    u64 Mod64::mod,Mod64::inv,Mod64::r2;
    int T, k;
    ULL A0, A1, M0, M1, C, M;
    int main() {
        scanf("%d", &T);
        while(T--) {
            scanf("%llu %llu %llu %llu %llu %llu %d", &A0, &A1, &M0, &M1, &C, &M, &k);
            Mod64::set_mod(M);
            Mod64 a0(A0), a1(A1), m0(M0), m1(M1), c(C), res(1), tmp(0);
            res = res*a0;
            res = res*a1;
            for (int i = 2; i <= k; ++i) {
                tmp = m0*a1+m1*a0+c;
                res = res*tmp;
                a0 = a1;
                a1 = tmp;
            }
            printf("%llu
    ", res.get());
        }
        return 0;
    }
    View Code

     

  • 相关阅读:
    山东省第一届acm程序设计竞赛题解
    今日头条(3-30)第四题(离线)
    codeforces #204(div2)
    网易雷火笔试-打印机(区间dp)
    360笔试(3-18)编程题
    codeforces #202(div2) C
    RedisTemplate实现分布式锁
    redis的缓存穿透,缓存并发,缓存失效
    松哥整理了 15 道 Spring Boot 高频面试题,看完当面霸(转)
    我读过的最好的epoll讲解(nginx原理)--转自”知乎“
  • 原文地址:https://www.cnblogs.com/widsom/p/10853417.html
Copyright © 2020-2023  润新知