• HDU 5306 Gorgeous Sequence


    5306 ( Gorgeous Sequence )

    思路:

    吉司机线段树

    维护最大值和次大值,大于最大值不改,在最大值和次大值之间的直接修改,小于次大值递归修改。

    代码:

    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #pragma GCC optimize(4)
    #include<bits/stdc++.h>
    using namespace std;
    #define y1 y11
    #define fi first
    #define se second
    #define pi acos(-1.0)
    #define LL long long
    #define ls rt<<1, l, m
    #define rs rt<<1|1, m+1, r
    //#define mp make_pair
    #define pb push_back
    #define ULL unsigned LL
    #define pll pair<LL, LL>
    #define pli pair<LL, int>
    #define pii pair<int, int>
    #define piii pair<pii, int>
    #define pdi pair<double, int>
    #define pdd pair<double, double>
    #define mem(a, b) memset(a, b, sizeof(a))
    #define debug(x) cerr << #x << " = " << x << "
    ";
    #define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    //head
    
    inline int read() {
        int a = 1, b = 0;
        char ch = getchar();
        while(ch < '0' || ch > '9') {
            if(ch == '-') a = -1;
            ch = getchar();
        }
        while('0' <= ch && ch <= '9') {
            b = b*10 + ch-'0';
            ch = getchar();
        }
        return a*b;
    }
    
    const int N = 1e6 + 5;
    int a[N], mx[N<<2], cnt[N<<2], se[N<<2], lazy[N<<2], n, m, op, x, y, t, T;
    LL sum[N<<2];
    inline void push_up(int rt) {
        sum[rt] = sum[rt<<1] + sum[rt<<1|1];
        mx[rt] = max(mx[rt<<1], mx[rt<<1|1]);
        if(mx[rt<<1] > mx[rt<<1|1]) se[rt] = max(se[rt<<1], mx[rt<<1|1]), cnt[rt] = cnt[rt<<1];
        else if(mx[rt<<1] < mx[rt<<1|1]) se[rt] = max(se[rt<<1|1], mx[rt<<1]), cnt[rt] = cnt[rt<<1|1];
        else se[rt] = max(se[rt<<1], se[rt<<1|1]), cnt[rt] = cnt[rt<<1] + cnt[rt<<1|1];
    }
    inline void push_down(int rt) {
        if(lazy[rt] < mx[rt<<1]) sum[rt<<1] -= (mx[rt<<1] - lazy[rt])*1LL*cnt[rt<<1], mx[rt<<1] = lazy[rt], lazy[rt<<1] = lazy[rt];
        if(lazy[rt] < mx[rt<<1|1]) sum[rt<<1|1] -= (mx[rt<<1|1] - lazy[rt])*1LL*cnt[rt<<1|1], mx[rt<<1|1] = lazy[rt], lazy[rt<<1|1] = lazy[rt];
        lazy[rt] = 0;
    }
    void build(int rt, int l, int r) {
        lazy[rt] = 0;
        if(l == r) {
            sum[rt] = mx[rt] = a[l];
            se[rt] = -1;
            cnt[rt] = 1;
            return ;
        }
        int m = l+r >> 1;
        build(ls);
        build(rs);
        push_up(rt);
    }
    void update(int L, int R, int x, int rt, int l, int r) {
        if(mx[rt] <= x) return ;
        if(L <= l && r <= R) {
            if(l == r) {
                sum[rt] = mx[rt] = x;
                se[rt] = -1;
                cnt[rt] = 1;
                return ;
            }
            if(se[rt] < x && x < mx[rt]) {
                sum[rt] -= (mx[rt] - x)*1LL*cnt[rt];
                mx[rt] = x;
                lazy[rt] = x;
            }
            else {
                int m = l+r >> 1;
                if(lazy[rt]) push_down(rt);
                update(L, R, x, ls);
                update(L, R, x, rs);
                push_up(rt);
            }
            return ;
        }
        int m = l+r >> 1;
        if(lazy[rt]) push_down(rt);
        if(L <= m) update(L, R, x, ls);
        if(R  > m) update(L, R, x, rs);
        push_up(rt);
    }
    LL querysum(int L, int R, int rt, int l, int r) {
        if(L <= l && r <= R) return sum[rt];
        int m = l+r >> 1;
        LL ans = 0;
        if(lazy[rt]) push_down(rt);
        if(L <= m) ans += querysum(L, R, ls);
        if(R  > m) ans += querysum(L, R, rs);
        push_up(rt);
        return ans;
    }
    int querymx(int L, int R, int rt, int l, int r) {
        if(L <= l && r <= R) return mx[rt];
        int m = l+r >> 1;
        int ans = 0;
        if(lazy[rt]) push_down(rt);
        if(L <= m) ans = max(ans, querymx(L, R, ls));
        if(R  > m) ans = max(ans, querymx(L, R, rs));
        push_up(rt);
        return ans;
    }
    int main() {
        T = read();
        while(T--) {
            n = read(); m = read();
            for (int i = 1; i <= n; ++i) a[i] = read();
            build(1, 1, n);
            for (int i = 1; i <= m; ++i) {
                op = read();
                if(op == 0) {
                    x = read();
                    y = read();
                    t = read();
                    update(x, y, t, 1, 1, n);
                }
                else if(op == 1) {
                    x = read();
                    y = read();
                    printf("%d
    ", querymx(x, y, 1, 1, n));
                }
                else {
                    x = read();
                    y = read();
                    printf("%lld
    ", querysum(x, y, 1, 1, n));
                }
            }
        }
        return 0;
    }
  • 相关阅读:
    JSP基础语法:注释、Scriptlet、编译指令
    JDBC的LIKE书写规范
    AWT回顾篇
    1.五子棋预备知识
    对象的生命周期回顾篇
    学习activemq(2)写个简单的程序
    activemq in action(3)剖析JMS消息(转)
    activemq in action(1)
    学习activemq(3)
    hadhoop安装
  • 原文地址:https://www.cnblogs.com/widsom/p/10770416.html
Copyright © 2020-2023  润新知