线段树の二 区间乘+区间加
具体就不解释了,看上一篇文章
放代码
注意点:!!!!
注意运算符优先级
比如:
a*=b%p 是b先mod p再与a相乘
a<<1+1是1+1再a位移
a<<1=a*2
a<<1|1=a*2+1
/******************************* 线段树V2.0 支持区间加、区间乘、区间和查询 ********************************/ #include<iostream> #include<cstdio> #include<cstring> #define N 1000010 using namespace std; struct node { int left;//节点所代表区间左端 int right;//节点所代表区间右端 long long sum;//区间和 long long add;//区间加Lazy标记 long long mult;//区间乘Lazy标记 node(){mult=1;} } tree[N]; long long a[N]; int n,m,p;//n:区间大小 m:操作次数 p:取模 //left:当前区间左端 right:当前区间右端 node:当前节点 void Build_Tree(int left,int right,int node) { tree[node].left=left; tree[node].right=right; if(left==right) tree[node].sum=a[left]; else { int mid=(left+right)>>1; Build_Tree(left,mid,node<<1); Build_Tree(mid+1,right,node<<1|1); tree[node].sum=(tree[node<<1].sum+tree[node<<1|1].sum)%p; } } //标记下放 node:当前节点 void Push_Down(int node) { if(tree[node].add==0&&tree[node].mult==1) return; tree[node<<1].mult=tree[node<<1].mult*tree[node].mult%p; tree[node<<1|1].mult=tree[node<<1|1].mult*tree[node].mult%p; tree[node<<1].add=tree[node<<1].add*tree[node].mult%p; tree[node<<1|1].add=tree[node<<1|1].add*tree[node].mult%p; tree[node<<1].sum=tree[node<<1].sum*tree[node].mult%p; tree[node<<1|1].sum=tree[node<<1|1].sum*tree[node].mult%p; tree[node].mult=1; tree[node<<1].add=(tree[node<<1].add+tree[node].add)%p; tree[node<<1|1].add=(tree[node<<1|1].add+tree[node].add)%p; tree[node<<1].sum=(tree[node<<1].sum+tree[node].add*(tree[node<<1].right-tree[node<<1].left+1))%p; tree[node<<1|1].sum=(tree[node<<1|1].sum+tree[node].add*(tree[node<<1|1].right-tree[node<<1|1].left+1))%p; tree[node].add=0; } //上推 node:当前节点 void Push_Up(int node) { tree[node].sum=(tree[node<<1].sum+tree[node<<1|1].sum)%p; } //区间加操作 left:操作区间左端点 right:操作区间右端点 node:当前节点 value:操作值 void Add_Range(int left,int right,int node,long long value) { if(tree[node].left>=left&&tree[node].right<=right) { tree[node].add+=value%p; tree[node].sum+=value*(tree[node].right-tree[node].left+1)%p; return; } Push_Down(node); int mid=(tree[node].left+tree[node].right)>>1; if(left<=mid) Add_Range(left,right,node<<1,value); if(right>mid) Add_Range(left,right,node<<1|1,value); Push_Up(node); } //区间乘操作 left:操作区间左端点 right:操作区间右端点 node:当前节点 value:操作值 void Mult_Range(int left,int right,int node,long long value) { if(tree[node].left>=left&&tree[node].right<=right) { tree[node].mult=tree[node].mult*value%p; tree[node].add=tree[node].add*value%p; tree[node].sum=tree[node].sum*value%p; return; } Push_Down(node); int mid=(tree[node].left+tree[node].right)>>1; if(left<=mid) Mult_Range(left,right,node<<1,value); if(right>mid) Mult_Range(left,right,node<<1|1,value); Push_Up(node); } //区间和查询 left:查询区间左端点 right:查询区间右端点 node:当前节点 long long Query_Sum(int left,int right,int node) { if(tree[node].left>right||tree[node].right<left) return 0; Push_Down(node); if(tree[node].left>=left&&tree[node].right<=right) return tree[node].sum%p; return (Query_Sum(left,right,node*2)+Query_Sum(left,right,node*2+1))%p; } int main() { cin>>n>>m>>p; for(int i=1; i<=n; i++) cin>>a[i]; Build_Tree(1,n,1); while(m--) { int x,y,c; cin>>c>>x>>y; if(c==1)//区间乘操作 { long long v; cin>>v; Mult_Range(x,y,1,v); } if(c==2)//区间加操作 { long long v; cin>>v; Add_Range(x,y,1,v); } if(c==3)//查询 cout<<Query_Sum(x,y,1)<<endl; } return 0; }