• 一个简单的时间片轮转多道程序内核


    朱宇轲 + 原创作品转载请注明出处 + 《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000

      本次课程老师为我们演示了一个简单时间片轮转多道程序内核代码,今天我们讲对它进行运行和分析。

          实验截图

          需要到github上下载mykernel的源代码并加载到Linux系统中。这里需要注意自己的Linux版本,我之前用的是CentOS,不能执行老师提供的命令,重装了ubuntu之后才终于解决了问题,神坑无比TAT

          

          配置完环境后运行效果如下:

         

          实验分析

          这个mykernel内核实际上重点就是三个文件:mypcb.h、mymain.c和myinterrupt.c。它们各有不同的功能,mypcb.h定义了进程管理结构PCB和Thread,mymain.c定义了各个进程的PCB并初始化进程,myinterrupt.c定义了进程主动调度及时钟中断处理。

          首先是mypcb.h文件

    #define MAX_TASK_NUM        4
    #define KERNEL_STACK_SIZE   1024*8
    
    /* CPU-specific state of this task */
    struct Thread {
        unsigned long		ip;
        unsigned long		sp;
    };
    
    typedef struct PCB{
        int pid;
        volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
        char stack[KERNEL_STACK_SIZE];
        /* CPU-specific state of this task */
        struct Thread thread;
        unsigned long	task_entry;
        struct PCB *next;
    }tPCB;
    
    void my_schedule(void);
    

      PCB定义了每个进程的组织结构,其中pid表示进程号,state代表进程状态,stack为进程的内存空间,thread.sp为进程内置的栈顶指针,thread.ip为进程当前指向的代码。注意next指针,它指向当前的下一个进程,实际上是使该进程组在内存中组织为一个循环链表。

         然后是mymain.c文件

    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    
    
    #include "mypcb.h"
    
    tPCB task[MAX_TASK_NUM];
    tPCB * my_current_task = NULL;
    volatile int my_need_sched = 0;
    
    void my_process(void);
    
    
    void __init my_start_kernel(void)
    {
        int pid = 0;
        int i;
        /* Initialize process 0*/
        task[pid].pid = pid;
        task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
        task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
        task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
        task[pid].next = &task[pid];
        /*fork more process */
        for(i=1;i<MAX_TASK_NUM;i++)
        {
            memcpy(&task[i],&task[0],sizeof(tPCB));
            task[i].pid = i;
            task[i].state = -1;
            task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
            task[i].next = task[i-1].next;
            task[i-1].next = &task[i];
        }
        /* start process 0 by task[0] */
        pid = 0;
        my_current_task = &task[pid];
    	asm volatile(
        	"movl %1,%%esp
    	" 	/* set task[pid].thread.sp to esp */
        	"pushl %1
    	" 	        /* push ebp */
        	"pushl %0
    	" 	        /* push task[pid].thread.ip */
        	"ret
    	" 	            /* pop task[pid].thread.ip to eip */
        	"popl %%ebp
    	"
        	: 
        	: "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)	/* input c or d mean %ecx/%edx*/
    	);
    }   
    void my_process(void)
    {
        int i = 0;
        while(1)
        {
            i++;
            if(i%10000000 == 0)
            {
                printk(KERN_NOTICE "this is process %d -
    ",my_current_task->pid);
                if(my_need_sched == 1)
                {
                    my_need_sched = 0;
            	    my_schedule();
            	}
            	printk(KERN_NOTICE "this is process %d +
    ",my_current_task->pid);
            }     
        }
    }
    

       该文件的my_start_kernel函数首先初始化了每一个进程,然后执行汇编部分,前两句话目的是将ebp和esp都指向0号进程PCB中的栈底。3,4句则是跳转至进程0的起始地址。

           至于my_process函数,则就是每个进程的执行函数。当my_need_sched==1时,进入中断切换到下一个进程。

    myinterrupt.c的代码如下

    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    
    #include "mypcb.h"
    
    extern tPCB task[MAX_TASK_NUM];
    extern tPCB * my_current_task;
    extern volatile int my_need_sched;
    volatile int time_count = 0;
    
    /*
     * Called by timer interrupt.
     * it runs in the name of current running process,
     * so it use kernel stack of current running process
     */
    void my_timer_handler(void)
    {
    #if 1
        if(time_count%1000 == 0 && my_need_sched != 1)
        {
            printk(KERN_NOTICE ">>>my_timer_handler here<<<
    ");
            my_need_sched = 1;
        } 
        time_count ++ ;  
    #endif
        return;  	
    }
    
    void my_schedule(void)
    {
        tPCB * next;
        tPCB * prev;
    
        if(my_current_task == NULL 
            || my_current_task->next == NULL)
        {
        	return;
        }
        printk(KERN_NOTICE ">>>my_schedule<<<
    ");
        /* schedule */
        next = my_current_task->next;
        prev = my_current_task;
        if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
        {
        	/* switch to next process */
        	asm volatile(	
            	"pushl %%ebp
    	" 	    /* save ebp */
            	"movl %%esp,%0
    	" 	/* save esp */
            	"movl %2,%%esp
    	"     /* restore  esp */
            	"movl $1f,%1
    	"       /* save eip */	
            	"pushl %3
    	" 
            	"ret
    	" 	            /* restore  eip */
            	"1:	"                  /* next process start here */
            	"popl %%ebp
    	"
            	: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            	: "m" (next->thread.sp),"m" (next->thread.ip)
        	); 
        	my_current_task = next; 
        	printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);   	
        }
        else
        {
            next->state = 0;
            my_current_task = next;
            printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);
        	/* switch to new process */
        	asm volatile(	
            	"pushl %%ebp
    	" 	    /* save ebp */
            	"movl %%esp,%0
    	" 	/* save esp */
            	"movl %2,%%esp
    	"     /* restore  esp */
            	"movl %2,%%ebp
    	"     /* restore  ebp */
            	"movl $1f,%1
    	"       /* save eip */	
            	"pushl %3
    	" 
            	"ret
    	" 	            /* restore  eip */
            	: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            	: "m" (next->thread.sp),"m" (next->thread.ip)
        	);          
        }   
        return;	
    }
    

      my_timer_handler应该是一个系统内部运行的累加程序, 用来控制my_need_sched的值,从而来判断是否需要切换进程。

          my_schedule则是进行进程切换的主要函数。首先需要判断当前进程是否为空,若否,则进入汇编模块。在汇编模块中,分别存储当前进程的ip、sp等信息,将要执行进程的sp赋给esp,并将它的ip入栈并赋给eip(ret操作),然后系统就会去进入下一个进程的代码空间,执行该进程。需要注意的是,汇编代码中“movl $1f,%1 ”这一段是将当前进程目前执行的代码处存储到sp中,当下一次进程调度轮到它时就会直接执行上次执行到的下一行代码。$1表示一个标号,也就是汇编代码段中“1: ”处,下次再调度到该进程时就会从那里开始执行。

          由于待执行的进程状态的不同,my_schedule函数分出了if和else两段代码,其实大同小异,大家可以自己再进一步理解一下其中的差异。

          本次课程的代码就分析到这里,谢谢大家!

  • 相关阅读:
    aws-lambda之异步实现文件的下载上传
    aws实例部署flask报错script-timed-out-before-returning-headers-application-py
    aws上部署scrapy,出现 Out of Memory,内存溢出
    在线UserAgent,爬虫UA
    ubuntu10.24 下安装 unixODBC coreseek4.1 手记
    ubuntu12.04 安装 python2.6
    coreseek/sphinx CentOS6.4下安装
    Elasticsearch 6.2.3 崩溃经历
    (转)梳理在线教育的几大金矿
    kangaroo-open 开源在线公开课平台
  • 原文地址:https://www.cnblogs.com/wickedpriest/p/4340439.html
Copyright © 2020-2023  润新知