• tensorflow实战系列(三)一个完整的例子


    #!/usr/bin/env python2
    # -*- coding: utf-8 -*-
    """
    Created on Wed Jan 18 08:42:55 2017

    @author: root
    """

    #!/usr/bin/env python2
    # -*- coding: utf-8 -*-
    """
    Created on Mon Jan 16 11:08:21 2017

    @author: root
    """
    import tensorflow as tf
    import frecordfortrain
    tf.device(0)
    def read_and_decode(filename):
        #根据文件名生成一个队列
        filename_queue = tf.train.string_input_producer([filename])

        reader = tf.TFRecordReader()
        _, serialized_example = reader.read(filename_queue)   #返回文件名和文件
        features = tf.parse_single_example(serialized_example,
                                           features={
                                               'label': tf.FixedLenFeature([], tf.int64),
                                               'img_raw' : tf.FixedLenFeature([], tf.string),
                                           })

        img = tf.decode_raw(features['img_raw'], tf.uint8)
        img = tf.reshape(img, [227, 227, 3])
     #    img = tf.reshape(img, [39, 39, 3])
        img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
        label = tf.cast(features['label'], tf.int32)
        print img,label
        return img, label
        
    def get_batch(image, label, batch_size,crop_size):  
            #数据扩充变换  
        distorted_image = tf.random_crop(image, [crop_size, crop_size, 3])#随机裁剪  
        distorted_image = tf.image.random_flip_up_down(distorted_image)#上下随机翻转  
        #distorted_image = tf.image.random_brightness(distorted_image,max_delta=63)#亮度变化  
        #distorted_image = tf.image.random_contrast(distorted_image,lower=0.2, upper=1.8)#对比度变化  
     
        #生成batch  
        #shuffle_batch的参数:capacity用于定义shuttle的范围,如果是对整个训练数据集,获取batch,那么capacity就应该够大  
        #保证数据打的足够乱  
    #    images, label_batch = tf.train.shuffle_batch([distorted_image, label],batch_size=batch_size,  
     #                                                num_threads=16,capacity=50000,min_after_dequeue=10000)  
        images, label_batch = tf.train.shuffle_batch([distorted_image, label],batch_size=batch_size,  
                                                     num_threads=2,capacity=2,min_after_dequeue=10)
        #images, label_batch=tf.train.batch([distorted_image, label],batch_size=batch_size)  
        # 调试显示  
        #tf.image_summary('images', images)  
        print "in get batch"
        print images,label_batch
        return images, tf.reshape(label_batch, [batch_size])    
        
     
    #from  data_encoder_decoeder import  encode_to_tfrecords,decode_from_tfrecords,get_batch,get_test_batch  
    import  cv2  
    import  os  
     
    class network(object):  
        def inference(self,images):  
            # 向量转为矩阵  
          #  images = tf.reshape(images, shape=[-1, 39,39, 3])
            images = tf.reshape(images, shape=[-1, 227,227, 3])# [batch, in_height, in_width, in_channels]  
            images=(tf.cast(images,tf.float32)/255.-0.5)*2#归一化处理  
     
     
     
            #第一层  
            conv1=tf.nn.bias_add(tf.nn.conv2d(images, self.weights['conv1'], strides=[1, 4, 4, 1], padding='VALID'),  
                                 self.biases['conv1'])  
     
            relu1= tf.nn.relu(conv1)  
            pool1=tf.nn.max_pool(relu1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID')  
     
     
            #第二层  
            conv2=tf.nn.bias_add(tf.nn.conv2d(pool1, self.weights['conv2'], strides=[1, 1, 1, 1], padding='SAME'),  
                                 self.biases['conv2'])  
            relu2= tf.nn.relu(conv2)  
            pool2=tf.nn.max_pool(relu2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID')  
     
     
            # 第三层  
            conv3=tf.nn.bias_add(tf.nn.conv2d(pool2, self.weights['conv3'], strides=[1, 1, 1, 1], padding='SAME'),  
                                 self.biases['conv3'])  
            relu3= tf.nn.relu(conv3)  
          #  pool3=tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')  
            conv4=tf.nn.bias_add(tf.nn.conv2d(relu3, self.weights['conv4'], strides=[1, 1, 1, 1], padding='SAME'),  
                                 self.biases['conv4'])  
            relu4= tf.nn.relu(conv4)
            conv5=tf.nn.bias_add(tf.nn.conv2d(relu4, self.weights['conv5'], strides=[1, 1, 1, 1], padding='SAME'),  
                                 self.biases['conv5'])  
            relu5= tf.nn.relu(conv5)
            pool5=tf.nn.max_pool(relu5, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID')
            # 全连接层1,先把特征图转为向量  
            flatten = tf.reshape(pool5, [-1, self.weights['fc1'].get_shape().as_list()[0]])  
     
            drop1=tf.nn.dropout(flatten,0.5)  
            fc1=tf.matmul(drop1, self.weights['fc1'])+self.biases['fc1']  
     
            fc_relu1=tf.nn.relu(fc1)  
     
            fc2=tf.matmul(fc_relu1, self.weights['fc2'])+self.biases['fc2']
            fc_relu2=tf.nn.relu(fc2)  
     
            fc3=tf.matmul(fc_relu2, self.weights['fc3'])+self.biases['fc3']
     
            return  fc3  

        def __init__(self):  
            with tf.variable_scope("weights"):
               self.weights={  
                    #39*39*3->36*36*20->18*18*20  
                    'conv1':tf.get_variable('conv1',[11,11,3,96],initializer=tf.contrib.layers.xavier_initializer_conv2d()),  
                    #18*18*20->16*16*40->8*8*40  
                    'conv2':tf.get_variable('conv2',[5,5,96,256],initializer=tf.contrib.layers.xavier_initializer_conv2d()),  
                    #8*8*40->6*6*60->3*3*60  
                    'conv3':tf.get_variable('conv3',[3,3,256,384],initializer=tf.contrib.layers.xavier_initializer_conv2d()),  
                    #3*3*60->120  
                    'conv4':tf.get_variable('conv4',[3,3,384,384],initializer=tf.contrib.layers.xavier_initializer_conv2d()),  

                    'conv5':tf.get_variable('conv5',[3,3,384,256],initializer=tf.contrib.layers.xavier_initializer_conv2d()),  


                    'fc1':tf.get_variable('fc1',[6*6*256,4096],initializer=tf.contrib.layers.xavier_initializer()),  
                    'fc2':tf.get_variable('fc2',[4096,4096],initializer=tf.contrib.layers.xavier_initializer()),  

                    #120->6  
                    'fc3':tf.get_variable('fc3',[4096,2],initializer=tf.contrib.layers.xavier_initializer()),  
                    }  
            with tf.variable_scope("biases"):  
                self.biases={  
                    'conv1':tf.get_variable('conv1',[96,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),  
                    'conv2':tf.get_variable('conv2',[256,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),  
                    'conv3':tf.get_variable('conv3',[384,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),  
                    'conv4':tf.get_variable('conv4',[384,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),  
                    'conv5':tf.get_variable('conv5',[256,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),  
                    
                    'fc1':tf.get_variable('fc1',[4096,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),  
                    'fc2':tf.get_variable('fc2',[4096,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),
                    'fc3':tf.get_variable('fc3',[2,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32))  

                }
            
            
            
        def inference_test(self,images):  
                    # 向量转为矩阵  
            images = tf.reshape(images, shape=[-1, 39,39, 3])# [batch, in_height, in_width, in_channels]  
            images=(tf.cast(images,tf.float32)/255.-0.5)*2#归一化处理  
     
     
     
            #第一层  
            conv1=tf.nn.bias_add(tf.nn.conv2d(images, self.weights['conv1'], strides=[1, 1, 1, 1], padding='VALID'),  
                                 self.biases['conv1'])  
     
            relu1= tf.nn.relu(conv1)  
            pool1=tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')  
     
     
            #第二层  
            conv2=tf.nn.bias_add(tf.nn.conv2d(pool1, self.weights['conv2'], strides=[1, 1, 1, 1], padding='VALID'),  
                                 self.biases['conv2'])  
            relu2= tf.nn.relu(conv2)  
            pool2=tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')  
     
     
            # 第三层  
            conv3=tf.nn.bias_add(tf.nn.conv2d(pool2, self.weights['conv3'], strides=[1, 1, 1, 1], padding='VALID'),  
                                 self.biases['conv3'])  
            relu3= tf.nn.relu(conv3)  
            pool3=tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')  
     
     
            # 全连接层1,先把特征图转为向量  
            flatten = tf.reshape(pool3, [-1, self.weights['fc1'].get_shape().as_list()[0]])  
     
            fc1=tf.matmul(flatten, self.weights['fc1'])+self.biases['fc1']  
            fc_relu1=tf.nn.relu(fc1)  
     
            fc2=tf.matmul(fc_relu1, self.weights['fc2'])+self.biases['fc2']  
     
            return  fc2  
     
        #计算softmax交叉熵损失函数  
        def sorfmax_loss(self,predicts,labels):  
            predicts=tf.nn.softmax(predicts)  
            labels=tf.one_hot(labels,self.weights['fc3'].get_shape().as_list()[1])  
            loss = tf.nn.softmax_cross_entropy_with_logits(predicts, labels)
          #  loss =-tf.reduce_mean(labels * tf.log(predicts))# tf.nn.softmax_cross_entropy_with_logits(predicts, labels)  
            self.cost= loss  
            return self.cost  
        #梯度下降  
        def optimer(self,loss,lr=0.01):  
            train_optimizer = tf.train.GradientDescentOptimizer(lr).minimize(loss)  
     
            return train_optimizer  
     
     
    def train():  
      #  encode_to_tfrecords("data/train.txt","data",'train.tfrecords',(45,45))  
      #  image,label=decode_from_tfrecords('data/train.tfrecords')
      #  image,label=read_and_decode("/home/zenggq/data/imagedata/data.tfrecords")
        batch_image,batch_label=read_and_decode("/home/zenggq/data/imagedata/data.tfrecords")
     #   batch_image = tf.random_crop(batch_image1, [39, 39, 3])
     #   batch_image,batch_label=get_batch(image,label,batch_size=5,crop_size=227)#batch 生成测试  
       #网络链接,训练所用  
        net=network()  
        inf=net.inference(batch_image)  
        loss=net.sorfmax_loss(inf,batch_label)  
        opti=net.optimer(loss)  
        #验证集所用  
        """ encode_to_tfrecords("data/val.txt","data",'val.tfrecords',(45,45))  
        test_image,test_label=decode_from_tfrecords('data/val.tfrecords',num_epoch=None)  
        test_images,test_labels=get_test_batch(test_image,test_label,batch_size=120,crop_size=39)#batch 生成测试  
        test_inf=net.inference_test(test_images)  
        correct_prediction = tf.equal(tf.cast(tf.argmax(test_inf,1),tf.int32), test_labels)  
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))  """
        init=tf.initialize_all_variables()
        with tf.Session() as session:  
            with tf.device("/gpu:1"):
                session.run(init)  
                coord = tf.train.Coordinator()  
                threads = tf.train.start_queue_runners(coord=coord)  
                max_iter=9000  
                iter=0  
                if os.path.exists(os.path.join("model",'model.ckpt')) is True:  
                    tf.train.Saver(max_to_keep=None).restore(session, os.path.join("model",'model.ckpt'))  
                while iter<max_iter:  
                    loss_np,_,label_np,image_np,inf_np=session.run([loss,opti,batch_image,batch_label,inf])  
                    #print image_np.shape  
                    #cv2.imshow(str(label_np[0]),image_np[0])  
                    #print label_np[0]  
                    #cv2.waitKey()  
                    #print label_np  
                    if iter%50==0:  
                        print 'trainloss:',loss_np  
             #       if iter%500==0:  
             #           accuracy_np=session.run([accuracy])  
              #          print '***************test accruacy:',accuracy_np,'*******************'  
             #           tf.train.Saver(max_to_keep=None).save(session, os.path.join('model','model.ckpt'))  
                    iter+=1  
                coord.request_stop()#queue需要关闭,否则报错  
                coord.join(threads)
           #     session.close()
        
        
        






        
    if __name__ == '__main__':
        train()

  • 相关阅读:
    树莓派/Debian 搭建 FTP 服务器
    树莓派/Debian “无法定位软件包 mod_ssl” 问题解决方案
    树莓派/Debian HTTP 到 HTTPS 端口重定向
    树莓派/Debian 搭建ownCloud私有云网盘
    树莓派/Debian 构建 LAMP Web 服务器并搭建 WordPress 博客(二)
    改进一维搜索
    实现共轭梯度法蒙皮模拟
    基本实现蒙皮模拟
    实现权重计算
    把状态保存
  • 原文地址:https://www.cnblogs.com/whu-zeng/p/6343312.html
Copyright © 2020-2023  润新知