Planting Trees
解题思路
枚举每一个下边界,再枚举其对应的所有上边界,求出其对应区间内的最大最小值,当下边界一样的时候,其最大最小值可以随着上边界减小逐步更新。然后将这些最大最小值分别放入单调队列,初始时设左边界为1,右边界即为当前放入的下标, 高即为此时枚举的高。当当前区间的最大最小值差超过m时,让最大值与最小值中位置靠前的出队,然后左边界变为其出队的下标+1。算出每一个满足条件的面积,取最大值即可。
代码如下
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
inline int read(){
int res = 0, w = 0; char ch = 0;
while(!isdigit(ch)){
w |= ch == '-', ch = getchar();
}
while(isdigit(ch)){
res = (res << 3) + (res << 1) + (ch ^ 48);
ch = getchar();
}
return w ? -res : res;
}
const int N = 505;
int a[N][N];
int minn[N], maxx[N];
struct T{
int i, val;
T(int val, int i): val(val), i(i){}
};
int main()
{
int t;
scanf("%d", &t);
while(t --){
int n, m;
n = read(), m = read();
for(int i = 1; i <= n; i ++){
for(int j = 1; j <= n; j ++)
a[i][j] = read();
}
int ans = 0;
for(int i = 1; i <= n; i ++){
for(int j = i; j >= 1; j --){
if(j == i){
for(int k = 1; k <= n; k ++)
minn[k] = maxx[k] = a[j][k];
}
else {
for(int k = 1; k <= n; k ++){
minn[k] = min(minn[k], a[j][k]);
maxx[k] = max(maxx[k], a[j][k]);
}
}
int dq1[N], dq2[N];
int l1, r1, l2, r2;
l1 = l2 = r1 = r2 = 0;
int l = 1;
for(int k = 1; k <= n; k ++){
while(l1 != r1 && minn[dq1[r1 - 1]] > minn[k])
-- r1;
while(l2 != r2 && maxx[dq2[r2 - 1]] < maxx[k])
-- r2;
dq1[r1 ++] = k;
dq2[r2 ++] = k;
while(l1 != r1 && l2 != r2 && maxx[dq2[l2]] - minn[dq1[l1]] > m){
int x1 = dq1[l1];
int x2 = dq2[l2];
l = min(x1, x2) + 1;
if(x1 <= x2)
l1 ++;
if(x1 >= x2)
l2 ++;
}
ans = max(ans, (i - j + 1) * (k - l + 1));
}
}
}
printf("%d
", ans);
}
return 0;
}