• ZOJ 4110 Strings in the Pocket (马拉车+回文串)


    链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=4110


    题目:

    BaoBao has just found two strings  and  in his left pocket, where  indicates the -th character in string , and  indicates the -th character in string .

    As BaoBao is bored, he decides to select a substring of  and reverse it. Formally speaking, he can select two integers  and  such that  and change the string to .

    In how many ways can BaoBao change  to  using the above operation exactly once? Let  be an operation which reverses the substring , and  be an operation which reverses the substring . These two operations are considered different, if  or .

    Input

    There are multiple test cases. The first line of the input contains an integer , indicating the number of test cases. For each test case:

    The first line contains a string  (), while the second line contains another string  (). Both strings are composed of lower-cased English letters.

    It's guaranteed that the sum of  of all test cases will not exceed .

    Output

    For each test case output one line containing one integer, indicating the answer.

    Sample Input

    2
    abcbcdcbd
    abcdcbcbd
    abc
    abc
    

    Sample Output

    3
    3
    

    Hint

    For the first sample test case, BaoBao can do one of the following three operations: (2, 8), (3, 7) or (4, 6).

    For the second sample test case, BaoBao can do one of the following three operations: (1, 1), (2, 2) or (3, 3).


    题意:

    存在S串和T串 要求对S串的一个子串做一次翻转操作可以得到T串的方案数

    思路:

    对子串分两种情况

    第一种是S串和T串完全相同 可以的方案数就是S串中的所有的回文子串 因为S串长度为2e6 必须要用马拉车线性去处理出所有的回文子串

    第二种是S串和T串有不同的部分 找出两个不同的字符最远的位置(l,r) 先判断S串的这个区间是否能通过翻转变成T串的区间 如果不可以直接输出0 如果可以 则向两侧同时延展寻找是否可以翻转


    代码:

    #include <bits/stdc++.h>
    
    using namespace std;
    typedef long long ll;
    const int maxn=2e6+100;
    int t,len[maxn*2];
    char S[maxn],T[maxn],s[maxn*2];
    
    int init(char *str){
        int n=strlen(str);
        for(int i=1,j=0;i<=2*n;j++,i+=2){
            s[i]='#';
            s[i+1]=str[j];
        }
        s[0]='$';
        s[2*n+1]='#';
        s[2*n+2]='@';
        s[2*n+3]='
    ';
        return 2*n+1;
    }
    
    void manacher(int n){
        int mx=0,p=0;
        for(int i=1;i<=n;i++){
            if(mx>i) len[i]=min(mx-i,len[2*p-i]);
            else len[i]=1;
            while(s[i-len[i]]==s[i+len[i]]) len[i]++;
            if(len[i]+i>mx) mx=len[i]+i,p=i;
        }
    }
    
    int main(){
        scanf("%d",&t);
        while(t--){
            scanf("%s",S);
            scanf("%s",T);
            int Len=strlen(S),tot1=-1,tot2=Len;
            for(int i=0;i<Len;i++){
                if(S[i]!=T[i]){
                    tot1=i;break;
                } 
            }
            for(int i=Len-1;i>=0;i--){
                if(S[i]!=T[i]){
                    tot2=i;break;
                }
            }
            if(tot1==-1){
                int n=init(S);
                for(int i=0;i<=n;i++) len[i]=0;
                manacher(n);
                ll ans=0;
                for(int i=1;i<=n;i++) ans+=len[i]/2;
                printf("%lld
    ",ans);
                continue;
            }
            else{
                int tmp=0;
                for(int i=tot1;i<=tot2;i++){
                    if(S[i]!=T[tot2-(i-tot1)]){
                        tmp=1;
                        break;
                    }
                }
                if(tmp==1){
                    printf("0
    "); 
                    continue;
                }
                else{
                    ll ans=1; tot1--; tot2++;
                    while (tot1>=0 && tot2<Len && S[tot1]==T[tot2] && S[tot2]==T[tot1]){
                            tot1--; tot2++; ans++;
                    }
                    printf("%lld
    ",ans);
                }
            }
        }
        return 0; 
    } 
  • 相关阅读:
    Frame Interpolation
    [ffmpeg] h.264解码所用的主要缓冲区介绍
    傅里叶变换的物理意义
    [ffmpeg] h264并行解码
    [ffmpeg] 多输入滤波同步方式(framesync)
    [ffmpeg] AVOption
    [ffmpeg] 定制滤波器
    [ffmpeg] 滤波格式协商
    [ffmpeg] 滤波
    [ffmpeg] 解码API
  • 原文地址:https://www.cnblogs.com/whdsunny/p/10785922.html
Copyright © 2020-2023  润新知