• 【转】动态规划DP


    【数据结构与算法】 DP 动态规划 介绍
    原创 2017年02月13日 00:42:51

    最近在看算法导论。

    DP全称是dynamic programming,这里programming不是编程,是一个表格保存之前的结果。

    DP 是一种编程思想,主要用于解决最优解类型的问题。

    其思路是为了求解当前的问题的最优解,使用子问题的最优解,然后综合处理,最终得到原问题的最优解。

    但是也不是说任何最优解问题都可以DP,使用dp的问题一般满足下面的两个特征:

    (1)最优子结构,就是指问题可以通过子问题最优解得到;体现为找出所有的子问题最优解,然后取其中的最优;

    (2)重叠子问题,就是子问题是会重复的。而不是一直产生新的子问题(比如分治类型的问题)。

    一般而言,满足上述两个条件的最优解问题都可以会使用DP来解决。

    DP在算法上的形式是什么?

    有两种,一种是自顶向下,就是直接从原问题入手,不断利用子问题来求解,这种写法是一个递归地形式,但是需要加入备忘录,就是说利用一个数组存已经算出的子问题的结果,下次遇到直接返回。这个思路叫做memoization,备忘录。是一种空间换时间的做法,因为某些子问题会被调用到很多次,如果使用memo,那么时间上会很高效。比如求斐波那契数列,几乎每一个求解都会用到f(2)这样的子问题,如果事先存好,那么时间复杂度会下降很多。还有一点,memo不是为dp而生的,它也是一种思想或者技巧,在递归或者dfs中可以使用,如果要求时间复杂度可以考虑使用memo。

    第二种是自底向上,这种不需要递归,就是不断地计算出小问题的解,然后后面的问题就可以利用小问题的解得到。

    下面是算法导论中的一个简单的例子,给出一个长度为n的钢管,然后给出切割为不同长度以后的价格,问如何切割获利最大。

    /**  
     * @author miracle  
     *切割钢条问题:  
     *长度:1  2   3   4   5   6   7   8   9   10  
     *价格:1  5   8   9   10  17  17  20  24  30  
     *问长度为n的钢条的最多卖多少钱  
     */  
    public class Solution {  
      
        int[] prices = {0, 1, 5, 8, 9, 10, 17, 17, 20, 24, 30};  
        int[] dp = new int[prices.length];  
        public int solve(int[] prices, int n){  
            if(n == 0) return 0;  
            int max = Integer.MIN_VALUE;  
            for(int i = 1; i <= n; i++){  
                max = Math.max(max, prices[i] + solve(prices, n - i));  
            }  
            return max;  
        }  
          
        public int solveWithMemoUpToBottom(int[] prices, int n){  
            if(n == 0 || dp[n] > 0) return dp[n];  
            int max = Integer.MIN_VALUE;  
            for(int i = 1; i <= n; i++){  
                max = Math.max(max, prices[i] + solve(prices, n - i));  
            }  
            dp[n] = max;  
            return max;  
        }  
          
        public int solveBottomToUp(int[] prices, int n){  
            int[] dp = new int[prices.length];  
            for(int i = 1; i <= n; i++){  
                int max = Integer.MIN_VALUE;  
                for(int j = 1; j <= i; j++){  
                    max = Math.max(max, prices[j] + prices[i - j]);  
                }  
                dp[i] = max;  
            }  
            return dp[n];  
        }  
          
        public static void main(String args[]){  
            Solution s = new Solution();  
    //      System.out.println(s.solve(s.prices, 1));  
    //      System.out.println(s.solve(s.prices, 2));  
    //      System.out.println(s.solve(s.prices, 3));  
    //      System.out.println(s.solve(s.prices, 4));  
    //      System.out.println(s.solve(s.prices, 5));  
            System.out.println(s.solveBottomToUp(s.prices, 1));  
            System.out.println(s.solveBottomToUp(s.prices, 2));  
            System.out.println(s.solveBottomToUp(s.prices, 3));  
            System.out.println(s.solveBottomToUp(s.prices, 4));  
            System.out.println(s.solveBottomToUp(s.prices, 5));  
        }  
    }  
    

    分别给出了不带memo,带memo的以及自底向上3中算法。

    就实际情况来看,一般还是使用非递归的bottom to up类型。但是memo在递归中的使用也是一个小的技巧。

    最后说下递归,dp,分治的区别。

    递归只是一种编程的思想,只要自己调用自己,就算是递归。

    分治,有三步,先分,再各自处理,最后整合。这里也涉及了子问题,这里的子问题是不重叠的,每一个只被处理一次,因此不需要memo。

    dp,可以使用递归,而且dp的子问题是重复的。

    dp说白了是子问题或者递归+memo,他其实是一种brute force,只不过记录了全部的结果,这就是为什么dp适用于解决最优解问题的原因(开头提到),其实它不一定非得解决最优解,只是它的思想使得它非常适合解决最优解问题。

  • 相关阅读:
    第2章 面试流程
    py面试指导系列-第1章 py服务端工程师面试指导
    十月的第一天
    I shall return
    k8S
    Eclipse编辑器基本设置
    Windows 下有什么软件能够极大地提高工作效率
    Bootstrap 轻量级后台管理系统模板--ACE使用介绍
    2014年将会受欢迎的IT技能--你有多少哪?
    面向程序员的数据库访问性能优化法则
  • 原文地址:https://www.cnblogs.com/whatiwhere/p/8723445.html
Copyright © 2020-2023  润新知