• POJ 2955 Brackets


    Brackets
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions:    Accepted: 

    Description

    We give the following inductive definition of a “regular brackets” sequence:

    • the empty sequence is a regular brackets sequence,
    • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
    • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
    • no other sequence is a regular brackets sequence

    For instance, all of the following character sequences are regular brackets sequences:

    (), [], (()), ()[], ()[()]

    while the following character sequences are not:

    (, ], )(, ([)], ([(]

    Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

    Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

    Input

    The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

    Output

    For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

    Sample Input

    ((()))
    ()()()
    ([]])
    )[)(
    ([][][)
    end

    Sample Output

    6
    6
    4
    0
    6

    代码中具体解释!!


    AC代码例如以下:

    #include<iostream>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    
    int dp[105][105];
    char str[1005];
    
    int main()
    {
        int i,j,o,t;
        while(cin>>str,str[0]!='e')
        {
            int l=strlen (str);
            for(i=0;i<l;i++)
                for(j=0;j<l;j++)
                dp[i][j]=0;//初始化状态
            for(o=2;o<=l;o++)//枚举全部区间长度
            {
                for(i=0;i<l-o+1;i++)
                {
                    j=i+o-1;//控制[i,j]区间长度为o。

    for(t=i;t<j;t++)//检索[i,j]中的满足条件的子区间 { dp[i][j]=max(dp[i][j],dp[i][t]+dp[t+1][j]);//更新子区间合成的区间最大值MAXXX if((str[i]=='('&&str[j]==')')||(str[i]=='['&&str[j]==']')) dp[i][j]=max(dp[i][j],dp[i+1][j-1]+2);//比較MAXXX与总体区间的相比谁大 } } } cout<<dp[0][l-1]<<endl; } return 0; }





  • 相关阅读:
    Cookie:Session,ServletContext
    thrift安装笔记
    Maven笔记
    JVM 几个重要的参数
    dbvisualizer参数设置
    Linux中如何设置java环境变量
    java.net.NoRouteToHostException: No route to host
    新上海滩感想
    也许你的种子永远不会开花,因为他是一棵参天大树
    男子给妻子做了张桌子,他病逝后家人偶然发现...
  • 原文地址:https://www.cnblogs.com/wgwyanfs/p/7083997.html
Copyright © 2020-2023  润新知