前言
之前一段时间写了篇文章DataNode数据处理中心DataXceiver从大的方向了解了下datanode读写操作的过程.可是并没有详细细粒度的去关注读写操作中的细节以及可能存在的问题,本篇文章算是对这方面的一个补充吧.虽然本文所涉及的范围面看起来非常窄,可是所呈现出来的结果一定会让你有所收获的.
DFSOutputStream写数据以及周边相关类,变量
本文主要阐述的datanode写数据的过程,而写数据过程中,第一个联系到的就是DFSOutputStream对象类.但事实上这仅仅是当中的一个大类,内部还包含了与其内部对象类的各种交互,协同的操作.以下花简短的篇幅介绍这几个类.
DataStreamer
数据流类,这是数据写操作时调用的主要类,DFSOutputStream的start()方法调用的就是dataStreamer的线程run方法,DFSOutputStream的主操作都是依靠内部对象类dataStreamer完毕实现,能够说,这二者的联系最为紧密.
ResponseProcessor
ResponseProcessor类是DataStreamer中的内部类,主要作用是接收pipeline中datanode的ack回复,它是一个线程类.给出源代码中的凝视:
// // Processes responses from the datanodes. A packet is removed // from the ackQueue when its response arrives. //
DFSPacket
数据包类,在DataStreamer和DFSOutputStream中都是用的这个类进行数据的传输的,给出源代码中的凝视:
/**************************************************************** * DFSPacket is used by DataStreamer and DFSOutputStream. * DFSOutputStream generates packets and then ask DatStreamer * to send them to datanodes. ****************************************************************/除了以上3个大类须要了解之外,还有几个变量相同须要重视,由于这些变量会在后面的分析中常常出现.
1.dataQueue(List<DFSPacket>)
待发送数据包列表
2.ackQueue(List<DFSPacket>)
数据包回复列表,数据包发送成功后,dfsPacket将会从dataQueue移到ackQueue中.
3.pipeline
pipeline是一个常常看见的名词,中文翻译的意思是"管道",可是这个词我在网上也搜了相关的更好的解释,稍稍比較好理解的方式是"流水线模型",也有些人把它与设计模式中的责任链模式相挂钩,所以这个词用中文翻译总是不能非常好的表达他的原意,在后面的篇幅中还会继续提到.
DataStreamer数据流对象
了解写数据的详细细节,须要首先了解DataStreamer的实现机理,由于DFSOutputStream的主操作无非是调用了dataStreamer的内部方法.DataStreamer源代码中的凝视非常好的解释了DataStreamer所做的事,学习DataStreamer能够从阅读他的凝视開始.
/********************************************************************* * * The DataStreamer class is responsible for sending data packets to the * datanodes in the pipeline. It retrieves a new blockid and block locations * from the namenode, and starts streaming packets to the pipeline of * Datanodes. Every packet has a sequence number associated with * it. When all the packets for a block are sent out and acks for each * if them are received, the DataStreamer closes the current block. * * The DataStreamer thread picks up packets from the dataQueue, sends it to * the first datanode in the pipeline and moves it from the dataQueue to the * ackQueue. The ResponseProcessor receives acks from the datanodes. When an * successful ack for a packet is received from all datanodes, the * ResponseProcessor removes the corresponding packet from the ackQueue. * * In case of error, all outstanding packets are moved from ackQueue. A new * pipeline is setup by eliminating the bad datanode from the original * pipeline. The DataStreamer now starts sending packets from the dataQueue. * *********************************************************************/假设看不懂这么多的英文,没有关系,我特地对其进行了翻译,帮助大家理解:
DataStreamer对象类是负责发送data packets数据包到pipeline中的各个datanode中. 它会从namenode中寻求一个新的blockId和block的位置信息,然后開始以流式的方式在pipeline 的datanode中进行packet数据包的传输.每一个包有属于它自己的一个数字序列号.当属于一个block 块的全部的数据包发生完毕而且对应的ack回复都被接收到了, 则表明此次的block写入完毕,dataStreamer 将会关闭当前block块. DataStreamer线程从dataQueue中选取packets数据包,发送此数据包给pipeline中的首个datanode, 然后移动此数据从dataQueue列表到ackQueue.ResponseProcessor会从各个datanode中接收ack回复. 当对于一个packet的成功的ack回复被全部的datanode接收到了,ResponseProcessor将会从ackQueue列 表中移除对应的packet包. 当出现错误的时候,全部的未完毕的packet数据包将会从ackQueue中移除掉.一个新的 pipeline会被又一次建立,新建立的pipeline会除掉坏的datanode.DataStreamer会从dataQueue 中又一次发送数据包OK,读完官方凝视,想必或多或少已经对当中的机理有所了解.下图是我做的一张结构简图:
这张图对应的程序逻辑在run()方法中,首先在while循环中会获取一个dataPacket数据包:
one = dataQueue.getFirst(); // regular data packet然后在接下来的操作中会出现packet的转移
// send the packet SpanId spanId = SpanId.INVALID; synchronized (dataQueue) { // move packet from dataQueue to ackQueue if (!one.isHeartbeatPacket()) { if (scope != null) { spanId = scope.getSpanId(); scope.detach(); one.setTraceScope(scope); } scope = null; dataQueue.removeFirst(); ackQueue.addLast(one); dataQueue.notifyAll(); } }然后发送数据到远程datanode节点
// write out data to remote datanode try (TraceScope ignored = dfsClient.getTracer(). newScope("DataStreamer#writeTo", spanId)) { one.writeTo(blockStream); blockStream.flush(); } catch (IOException e) { ...
dataStreamer发送完数据包之后,responseProcessor进程会收到来自datanode的ack回复,假设对于一个block块,收到了pipeline中datanode全部的ack回复信息,则代表这个block块发送完毕了.pipeline的datanode的构建分为2种情形,代表着2种情形的传输数据
BlockConstructionStage.PIPELINE_SETUP_CREATE
BlockConstructionStage.PIPELINE_SETUP_APPEND第一种情况在新分配块的时候进行的,从namenode上获取新的blockId和位置,然后连接上第一个datanode.
if (stage == BlockConstructionStage.PIPELINE_SETUP_CREATE) { if (LOG.isDebugEnabled()) { LOG.debug("Allocating new block: " + this); } setPipeline(nextBlockOutputStream()); initDataStreaming(); }
/** * Open a DataStreamer to a DataNode so that it can be written to. * This happens when a file is created and each time a new block is allocated. * Must get block ID and the IDs of the destinations from the namenode. * Returns the list of target datanodes. */ protected LocatedBlock nextBlockOutputStream() throws IOException { ... // // Connect to first DataNode in the list. // success = createBlockOutputStream(nodes, storageTypes, 0L, false); ...pipeline的第一阶段能够用下图表示然后另外一个阶段是第一个datanode节点向其它剩余节点建立连接
} else if (stage == BlockConstructionStage.PIPELINE_SETUP_APPEND) { if (LOG.isDebugEnabled()) { LOG.debug("Append to block {}", block); } setupPipelineForAppendOrRecovery(); if (streamerClosed) { continue; } initDataStreaming(); }后面是建立连接的代码
/** * Open a DataStreamer to a DataNode pipeline so that * it can be written to. * This happens when a file is appended or data streaming fails * It keeps on trying until a pipeline is setup */ private void setupPipelineForAppendOrRecovery() throws IOException { // Check number of datanodes. Note that if there is no healthy datanode, // this must be internal error because we mark external error in striped // outputstream only when all the streamers are in the DATA_STREAMING stage ... setupPipelineInternal(nodes, storageTypes); } protected void setupPipelineInternal(DatanodeInfo[] datanodes, StorageType[] nodeStorageTypes) throws IOException { ... // set up the pipeline again with the remaining nodes success = createBlockOutputStream(nodes, storageTypes, newGS, isRecovery); ...用图形展示的效果例如以下pipeline的异常重建发生在datanode io处理这块
public void run() { long lastPacket = Time.monotonicNow(); TraceScope scope = null; while (!streamerClosed && dfsClient.clientRunning) { ... DFSPacket one; try { // process datanode IO errors if any boolean doSleep = processDatanodeOrExternalError(); ...
/** * If this stream has encountered any errors, shutdown threads * and mark the stream as closed. * * @return true if it should sleep for a while after returning. */ private boolean processDatanodeOrExternalError() throws IOException { if (!errorState.hasDatanodeError() && !shouldHandleExternalError()) { return false; } ... if (response != null) { LOG.info("Error Recovery for " + block + " waiting for responder to exit. "); return true; } closeStream(); // move packets from ack queue to front of the data queue synchronized (dataQueue) { dataQueue.addAll(0, ackQueue); ackQueue.clear(); } // If we had to recover the pipeline five times in a row for the // same packet, this client likely has corrupt data or corrupting // during transmission. if (!errorState.isRestartingNode() && ++pipelineRecoveryCount > 5) { LOG.warn("Error recovering pipeline for writing " + block + ". Already retried 5 times for the same packet."); lastException.set(new IOException("Failing write. Tried pipeline " + "recovery 5 times without success.")); streamerClosed = true; return false; } setupPipelineForAppendOrRecovery(); ...
ResponseProcessor回复获取类
进入responseProcessor类的主运行方法:
@Override public void run() { setName("ResponseProcessor for block " + block); PipelineAck ack = new PipelineAck(); TraceScope scope = null; while (!responderClosed && dfsClient.clientRunning && !isLastPacketInBlock) { // process responses from datanodes. try { // read an ack from the pipeline long begin = Time.monotonicNow(); ack.readFields(blockReplyStream); ...这里会从blockReplyStream输入流中读取ack返回信息,要特别注意的是,这里的读到的ack与之前的ackQueue中的ack并非指同一个对象.这个ack指的是PipelineAck,基本的作用是获取当中的seqno序列号.
long seqno = ack.getSeqno();推断是否是有效的block回复
assert seqno != PipelineAck.UNKOWN_SEQNO : "Ack for unknown seqno should be a failed ack: " + ack; if (seqno == DFSPacket.HEART_BEAT_SEQNO) { // a heartbeat ack continue; }然后取出ack DFSPacket数据包,比較序列号,推断是否一致
// a success ack for a data packet DFSPacket one; synchronized (dataQueue) { one = ackQueue.getFirst(); } if (one.getSeqno() != seqno) { throw new IOException("ResponseProcessor: Expecting seqno " + " for block " + block + one.getSeqno() + " but received " + seqno); }此ack回复包推断完毕后,会进行对应的Packet移除
synchronized (dataQueue) { scope = one.getTraceScope(); if (scope != null) { scope.reattach(); one.setTraceScope(null); } lastAckedSeqno = seqno; pipelineRecoveryCount = 0; ackQueue.removeFirst(); dataQueue.notifyAll(); one.releaseBuffer(byteArrayManager); }ackQueue中的packet就被彻底移除掉了,从最開始的增加到dataQueue,到move到ackQueue,到最后回复确认完毕,进行终于的移除.
在这些操作运行期间,还会进行一项推断
isLastPacketInBlock = one.isLastPacketInBlock();假设此packet是发送block块的最后一个packet,则此responseProcessor将会退出循环.
while (!responderClosed && dfsClient.clientRunning && !isLastPacketInBlock)当然,期间发生异常的时候,会导致responderClosed设置为true,导致循环的退出
catch (Exception e) { if (!responderClosed) { lastException.set(e); errorState.setInternalError(); errorState.markFirstNodeIfNotMarked(); synchronized (dataQueue) { dataQueue.notifyAll(); } if (!errorState.isRestartingNode()) { LOG.warn("Exception for " + block, e); } responderClosed = true; }相同地,我做了一张结构图简单的展示了当中的流程
DataStreamer与DFSOutputStream的关系
在前文中已经或多或少提到了这2个类之间的关系.可简要概况为4大关系:
1.创建与被创建的关系.
2.启动与被启动的关系.
3.关闭与被关闭的关系.
4.生产者与消费者的关系.
以下一一做简要的分析.创建与被创建的关系,能够从DFSOutputStream的构造函数中进行体现
/** Construct a new output stream for append. */ private DFSOutputStream(DFSClient dfsClient, String src, EnumSet<CreateFlag> flags, Progressable progress, LocatedBlock lastBlock, HdfsFileStatus stat, DataChecksum checksum, String[] favoredNodes) throws IOException { this(dfsClient, src, progress, stat, checksum); initialFileSize = stat.getLen(); // length of file when opened this.shouldSyncBlock = flags.contains(CreateFlag.SYNC_BLOCK); boolean toNewBlock = flags.contains(CreateFlag.NEW_BLOCK); this.fileEncryptionInfo = stat.getFileEncryptionInfo(); // The last partial block of the file has to be filled. if (!toNewBlock && lastBlock != null) { // indicate that we are appending to an existing block streamer = new DataStreamer(lastBlock, stat, dfsClient, src, progress, checksum, cachingStrategy, byteArrayManager); getStreamer().setBytesCurBlock(lastBlock.getBlockSize()); adjustPacketChunkSize(stat); getStreamer().setPipelineInConstruction(lastBlock); } else { computePacketChunkSize(dfsClient.getConf().getWritePacketSize(), bytesPerChecksum); streamer = new DataStreamer(stat, lastBlock != null ? lastBlock.getBlock() : null, dfsClient, src, progress, checksum, cachingStrategy, byteArrayManager, favoredNodes); } }第二点,启动与被启动的关系
启动指的是start()方法
protected synchronized void start() { getStreamer().start(); }getStreamer方法用于获取内部对象变量dataStreamer.
/** * Returns the data streamer object. */ protected DataStreamer getStreamer() { return streamer; }第三点,关闭与被关闭的关系.
public void close() throws IOException { synchronized (this) { try (TraceScope ignored = dfsClient.newPathTraceScope( "DFSOutputStream#close", src)) { closeImpl(); } } dfsClient.endFileLease(fileId); } protected synchronized void closeImpl() throws IOException { ... closeThreads(true); ... }
// shutdown datastreamer and responseprocessor threads. // interrupt datastreamer if force is true protected void closeThreads(boolean force) throws IOException { try { getStreamer().close(force); getStreamer().join(); getStreamer().closeSocket(); } catch (InterruptedException e) { throw new IOException("Failed to shutdown streamer"); } finally { getStreamer().setSocketToNull(); setClosed(); } }在这里就会把streamer相关的类进行关闭.
第四点,生成者与消费者的关系,这个关系有点意思,那消费对象是什么呢,答案就是DFSPacket,dataQueue中所存储的对象. 也就是说,DFSOutputStream中的方法会往dataQueue中put入DFSPacket,然后dataStreamer会在主方法中区获取,也就是上文分析的场景.当中在DFSOutputStream中写入数据包的方法例如以下
// @see FSOutputSummer#writeChunk() @Override protected synchronized void writeChunk(byte[] b, int offset, int len, byte[] checksum, int ckoff, int cklen) throws IOException { dfsClient.checkOpen(); checkClosed(); if (len > bytesPerChecksum) { throw new IOException("writeChunk() buffer size is " + len + " is larger than supported bytesPerChecksum " + bytesPerChecksum); } if (cklen != 0 && cklen != getChecksumSize()) { throw new IOException("writeChunk() checksum size is supposed to be " + getChecksumSize() + " but found to be " + cklen); } if (currentPacket == null) { currentPacket = createPacket(packetSize, chunksPerPacket, getStreamer() .getBytesCurBlock(), getStreamer().getAndIncCurrentSeqno(), false); ... } currentPacket.writeChecksum(checksum, ckoff, cklen); currentPacket.writeData(b, offset, len); currentPacket.incNumChunks(); getStreamer().incBytesCurBlock(len); // If packet is full, enqueue it for transmission if (currentPacket.getNumChunks() == currentPacket.getMaxChunks() || getStreamer().getBytesCurBlock() == blockSize) { enqueueCurrentPacketFull(); } }enqueueCurrentPacketFull方法就会将packet写入dataQueue中.
void enqueueCurrentPacket() throws IOException { getStreamer().waitAndQueuePacket(currentPacket); currentPacket = null; }事实上在DFSOutputStream的close方法中,也会触发一次flush data最后清洗数据的操作到各个detained中,也会调用到enqueueCurrentPacket方法.
protected synchronized void closeImpl() throws IOException { ... flushBuffer(); // flush from all upper layers if (currentPacket != null) { enqueueCurrentPacket(); } if (getStreamer().getBytesCurBlock() != 0) { setCurrentPacketToEmpty(); } flushInternal(); // flush all data to Datanodes // get last block before destroying the streamer // If exception happened before, the last block will be null lastBlock = getStreamer().getBlock(); ...相同地,我也设计了一张关系结果图展现上述的4种关系.
Streamer线程泄漏问题
Streamer线程泄漏问题是在学习DFSOutputStream相关机理时发现的,过程算是比較意外吧.线程泄漏问题能够类比于内存泄漏,就是该释放的空间没释放,线程泄漏问题同理,该关闭的线程对象没有及时关闭,发生的方法自然而然地在DFSOutputStream的close方法中了,又一次调出这段程序.
/** * Closes this output stream and releases any system * resources associated with this stream. */ @Override public void close() throws IOException { synchronized (this) { try (TraceScope ignored = dfsClient.newPathTraceScope( "DFSOutputStream#close", src)) { closeImpl(); } } dfsClient.endFileLease(fileId); }再次进入closeImpl实质的关闭方法,细致观察每步操作可能存在的问题
protected synchronized void closeImpl() throws IOException { if (isClosed()) { getStreamer().getLastException().check(true); return; } try { flushBuffer(); // flush from all upper layers if (currentPacket != null) { enqueueCurrentPacket(); } if (getStreamer().getBytesCurBlock() != 0) { setCurrentPacketToEmpty(); } flushInternal(); // flush all data to Datanodes // get last block before destroying the streamer // If exception happened before, the last block will be null ExtendedBlock lastBlock = getStreamer().getBlock(); closeThreads(true); try (TraceScope ignored = dfsClient.getTracer().newScope("completeFile")) { completeFile(lastBlock); } } catch (ClosedChannelException ignored) { } finally { setClosed(); } }由于可能存在streamer线程对象未关闭的问题,所以我们得要找到可能在closeThreads方法之前可能有问题的代码.假设你比較细心的话,应该立即发现问题所在了.
flushBuffer(); // flush from all upper layers if (currentPacket != null) { enqueueCurrentPacket(); } if (getStreamer().getBytesCurBlock() != 0) { setCurrentPacketToEmpty(); } flushInternal(); // flush all data to Datanodes从flushBuffer到flushInternal中的操作都可能抛出IO异常,一旦抛出异常,自然就直接跳到finally处进行处理,中间的closeThread将不会被运行到,从而导致dataStreamer线程泄漏.这个bug我已经提交开源社区,而且提供对应的patch,编号HDFS-9812,解决的方法非常easy,在这层代码中再包一层try,catch,把closeThread方法放入新增try,catch方法的末尾进行处理,详细信息能够看文章末尾的链接.
相关链接
Issue链接: https://issues.apache.org/jira/browse/HDFS-9812
Github patch链接: https://github.com/linyiqun/open-source-patch/tree/master/hdfs/HDFS-9812