Description
已知一个长度为n的正整数序列A(下标从1开始), 令 S = { x | 1 <= x <= n }, S 的幂集2^S定义为S 所有子集构成的集合。定义映射 f : 2^S -> Zf(空集) = 0f(T) = XOR A[t] , 对于一切t属于T现在albus把2^S中每个集合的f值计算出来, 从小到大排成一行, 记为序列B(下标从1开始)。 给定一个数, 那么这个数在序列B中第1次出现时的下标是多少呢?
Input
第一行一个数n, 为序列A的长度。接下来一行n个数, 为序列A, 用空格隔开。最后一个数Q, 为给定的数.
Output
共一行, 一个整数, 为Q在序列B中第一次出现时的下标模10086的值.
Sample Input
3
1 2 3
1
1 2 3
1
Sample Output
3
样例解释:
N = 3, A = [1 2 3]
S = {1, 2, 3}
2^S = {空, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
f(空) = 0
f({1}) = 1
f({2}) = 2
f({3}) = 3
f({1, 2}) = 1 xor 2 = 3
f({1, 3}) = 1 xor 3 = 2
f({2, 3}) = 2 xor 3 = 1
f({1, 2, 3}) = 0
所以
B = [0, 0, 1, 1, 2, 2, 3, 3]
样例解释:
N = 3, A = [1 2 3]
S = {1, 2, 3}
2^S = {空, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
f(空) = 0
f({1}) = 1
f({2}) = 2
f({3}) = 3
f({1, 2}) = 1 xor 2 = 3
f({1, 3}) = 1 xor 3 = 2
f({2, 3}) = 2 xor 3 = 1
f({1, 2, 3}) = 0
所以
B = [0, 0, 1, 1, 2, 2, 3, 3]
HINT
数据范围:
1 <= N <= 10,0000
其他所有输入均不超过10^9
正解:线性基。
题意就很绕。。给定一个序列,任意异或得到一个新的序列,并把序列排序。再给定一个Q,求Q在新序列中的排名。
然后我就不会做了。看了题解才知道线性基原来还有一个神奇的性质。
n个数的序列共有$2^{n}$种异或和,n个数的线性基共有k个数,所以n个数的线性基共有$2^{k}$种不同的异或和。神奇的是,$2^{k}$不同的异或和在$2^{n}$种异或和中出现的次数竟然相同,都是$2^{n-k}$次!
所以,我们只要算出线性基中异或和小于Q的数的个数,然后乘上$2^{n-k}$,再加上1,这个就是答案了。
1 //It is made by wfj_2048~ 2 #include <algorithm> 3 #include <iostream> 4 #include <complex> 5 #include <cstring> 6 #include <cstdlib> 7 #include <cstdio> 8 #include <vector> 9 #include <cmath> 10 #include <queue> 11 #include <stack> 12 #include <map> 13 #include <set> 14 #define inf (1<<30) 15 #define rhl (10086) 16 #define N (100010) 17 #define il inline 18 #define RG register 19 #define ll long long 20 #define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) 21 22 using namespace std; 23 24 vector <int> Q; 25 26 int a[N],p[35],n,q,rk,cnt; 27 28 il int gi(){ 29 RG int x=0,q=1; RG char ch=getchar(); while ((ch<'0' || ch>'9') && ch!='-') ch=getchar(); 30 if (ch=='-') q=-1,ch=getchar(); while (ch>='0' && ch<='9') x=x*10+ch-48,ch=getchar(); return q*x; 31 } 32 33 il void insert(RG int x){ 34 for (RG int i=30;i>=0;--i) 35 if (x&(1<<i)){ 36 if (!p[i]){ p[i]=x; break; } 37 x^=p[i]; 38 } 39 return; 40 } 41 42 il int qpow(RG int a,RG int b){ 43 RG int ans=1; 44 while (b){ 45 if (b&1) ans=ans*a%rhl; 46 a=a*a%rhl,b>>=1; 47 } 48 return ans; 49 } 50 51 il void work(){ 52 n=gi(); for (RG int i=1;i<=n;++i) a[i]=gi(),insert(a[i]); q=gi(); 53 for (RG int i=0;i<=30;++i) if (p[i]) Q.push_back(i),cnt++; 54 for (RG int i=0;i<Q.size();++i) if (q&(1<<Q[i])) rk+=1<<i; 55 printf("%d ",(rk%rhl*qpow(2,n-cnt)%rhl+1)%rhl); 56 return; 57 } 58 59 int main(){ 60 File("albus"); 61 work(); 62 return 0; 63 }