• 886. Possible Bipartition


    Given a set of n people (numbered 1, 2, ..., n), we would like to split everyone into two groups of any size.

    Each person may dislike some other people, and they should not go into the same group. 

    Formally, if dislikes[i] = [a, b], it means it is not allowed to put the people numbered a and b into the same group.

    Return true if and only if it is possible to split everyone into two groups in this way.

     

    Example 1:

    Input: n = 4, dislikes = [[1,2],[1,3],[2,4]]
    Output: true
    Explanation: group1 [1,4], group2 [2,3]
    

    Example 2:

    Input: n = 3, dislikes = [[1,2],[1,3],[2,3]]
    Output: false
    

    Example 3:

    Input: n = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]]
    Output: false
    

    Constraints:

    • 1 <= n <= 2000
    • 0 <= dislikes.length <= 10000
    • dislikes[i].length == 2
    • 1 <= dislikes[i][j] <= n
    • dislikes[i][0] < dislikes[i][1]
    • There does not exist i != j for which dislikes[i] == dislikes[j].
    class Solution {
        public boolean possibleBipartition(int n, int[][] dis) {
            int[] visited = new int[n + 1];
            List<Integer>[] graph = new ArrayList[n + 1];
            for(int i = 0; i <= n; i++) graph[i] = new ArrayList();
            for(int[] dislike: dis) {
                int fr = dislike[0], to = dislike[1];
                graph[fr].add(to);
                graph[to].add(fr);
            }
            for(int i = 1; i <= n; i++) {
                if(visited[i] == 0 && graph[i].size() > 0) {
                    visited[i] = 1;
                    Queue<Integer> q = new LinkedList();
                    q.offer(i);
                    while(!q.isEmpty()) {
                        int cur = q.poll();
                        for(int j : graph[cur]) {
                            if(visited[j] == 0) {
                                visited[j] = (visited[cur] == 1 ? 2 : 1);
                                q.offer(j);
                            }
                            else {
                                if(visited[j] == visited[cur]) return false;
                            }
                        }
                    }
                }
            }
            return true;
        }
    }

    和785一样,但是得先建立graph,完了之后bfs涂色

    class Solution {
        public boolean possibleBipartition(int N, int[][] dislikes) {
            Map<Integer, List<Integer>> map = new HashMap();
            for(int[] dis : dislikes) {
                map.computeIfAbsent(dis[0], a -> new ArrayList()).add(dis[1]);
                map.computeIfAbsent(dis[1], a -> new ArrayList()).add(dis[0]);
            }
            int[] color = new int[N + 1];
            
            for(int i = 1; i <= N; i++) {
                if(color[i] == 0) {
                    color[i] = 1;
                    Queue<Integer> q = new LinkedList();
                    q.offer(i);
                    while(!q.isEmpty()) {
                        int cur = q.poll();
                        if(map.containsKey(cur)) {
                            for(int nei : map.get(cur)) {
                                if(color[nei] == 0){
                                    color[nei] = color[cur] == 1 ? 2 : 1;
                                    q.offer(nei);
                                } 
                                else {
                                    if(color[nei] == color[cur]) return false;
                                }
                                
                            }
                        }
                        
                    }
                }
            }
            return true;
        }
    }
  • 相关阅读:
    【codevs1922】骑士共存问题——网络流
    【bzoj1855||hdu3401】股票交易——单调队列优化dp
    【bzoj2002】弹飞绵羊——分块
    【bzoj3790】神奇项链——manacher+贪心
    【hdu2149】Public Sale
    【hdu1846】Brave Game
    【hdu3294】Girls' research——manacher
    【hdu3068】最长回文——manacher算法
    [BZOJ] 1634: [Usaco2007 Jan]Protecting the Flowers 护花
    [BZOJ] 1651: [Usaco2006 Feb]Stall Reservations 专用牛棚
  • 原文地址:https://www.cnblogs.com/wentiliangkaihua/p/14957132.html
Copyright © 2020-2023  润新知