• 886. Possible Bipartition


    Given a set of n people (numbered 1, 2, ..., n), we would like to split everyone into two groups of any size.

    Each person may dislike some other people, and they should not go into the same group. 

    Formally, if dislikes[i] = [a, b], it means it is not allowed to put the people numbered a and b into the same group.

    Return true if and only if it is possible to split everyone into two groups in this way.

     

    Example 1:

    Input: n = 4, dislikes = [[1,2],[1,3],[2,4]]
    Output: true
    Explanation: group1 [1,4], group2 [2,3]
    

    Example 2:

    Input: n = 3, dislikes = [[1,2],[1,3],[2,3]]
    Output: false
    

    Example 3:

    Input: n = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]]
    Output: false
    

    Constraints:

    • 1 <= n <= 2000
    • 0 <= dislikes.length <= 10000
    • dislikes[i].length == 2
    • 1 <= dislikes[i][j] <= n
    • dislikes[i][0] < dislikes[i][1]
    • There does not exist i != j for which dislikes[i] == dislikes[j].
    class Solution {
        public boolean possibleBipartition(int n, int[][] dis) {
            int[] visited = new int[n + 1];
            List<Integer>[] graph = new ArrayList[n + 1];
            for(int i = 0; i <= n; i++) graph[i] = new ArrayList();
            for(int[] dislike: dis) {
                int fr = dislike[0], to = dislike[1];
                graph[fr].add(to);
                graph[to].add(fr);
            }
            for(int i = 1; i <= n; i++) {
                if(visited[i] == 0 && graph[i].size() > 0) {
                    visited[i] = 1;
                    Queue<Integer> q = new LinkedList();
                    q.offer(i);
                    while(!q.isEmpty()) {
                        int cur = q.poll();
                        for(int j : graph[cur]) {
                            if(visited[j] == 0) {
                                visited[j] = (visited[cur] == 1 ? 2 : 1);
                                q.offer(j);
                            }
                            else {
                                if(visited[j] == visited[cur]) return false;
                            }
                        }
                    }
                }
            }
            return true;
        }
    }

    和785一样,但是得先建立graph,完了之后bfs涂色

    class Solution {
        public boolean possibleBipartition(int N, int[][] dislikes) {
            Map<Integer, List<Integer>> map = new HashMap();
            for(int[] dis : dislikes) {
                map.computeIfAbsent(dis[0], a -> new ArrayList()).add(dis[1]);
                map.computeIfAbsent(dis[1], a -> new ArrayList()).add(dis[0]);
            }
            int[] color = new int[N + 1];
            
            for(int i = 1; i <= N; i++) {
                if(color[i] == 0) {
                    color[i] = 1;
                    Queue<Integer> q = new LinkedList();
                    q.offer(i);
                    while(!q.isEmpty()) {
                        int cur = q.poll();
                        if(map.containsKey(cur)) {
                            for(int nei : map.get(cur)) {
                                if(color[nei] == 0){
                                    color[nei] = color[cur] == 1 ? 2 : 1;
                                    q.offer(nei);
                                } 
                                else {
                                    if(color[nei] == color[cur]) return false;
                                }
                                
                            }
                        }
                        
                    }
                }
            }
            return true;
        }
    }
  • 相关阅读:
    Implementation of Message Receiver
    Data Model for Message Receiver
    SQL SERVER 批量生成编号
    修改hosts文件
    PHP-问题处理验证码无法显示出来
    PHP-问题处理Fatal error: Uncaught Error: Call to undefined function mb_strlen()
    PHP-问题处理Fatal error: Uncaught Error: Call to undefined function simplexml_load_file()
    10进制转33进制
    PHP-生成缩略图和添加水印图-学习笔记
    SQLServer地址搜索性能优化例子
  • 原文地址:https://www.cnblogs.com/wentiliangkaihua/p/14957132.html
Copyright © 2020-2023  润新知