Given a set of intervals, for each of the interval i, check if there exists an interval j whose start point is bigger than or equal to the end point of the interval i, which can be called that j is on the "right" of i.
For any interval i, you need to store the minimum interval j's index, which means that the interval j has the minimum start point to build the "right" relationship for interval i. If the interval j doesn't exist, store -1 for the interval i. Finally, you need output the stored value of each interval as an array.
Note:
- You may assume the interval's end point is always bigger than its start point.
- You may assume none of these intervals have the same srt point.
Example 1:
Input: [ [1,2] ] Output: [-1] Explanation: There is only one interval in the collection, so it outputs -1.
Example 2:
Input: [ [3,4], [2,3], [1,2] ] Output: [-1, 0, 1] Explanation: There is no satisfied "right" interval for [3,4]. For [2,3], the interval [3,4] has minimum-"right" start point; For [1,2], the interval [2,3] has minimum-"right" start point.
Example 3:
Input: [ [1,4], [2,3], [3,4] ] Output: [-1, 2, -1] Explanation: There is no satisfied "right" interval for [1,4] and [3,4]. For [2,3], the interval [3,4] has minimum-"right" start point.
class Solution { public int[] findRightInterval(int[][] intervals) { int n = intervals.length; int[] res = new int[n]; Arrays.fill(res, -1); for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { if(intervals[i][1] <= intervals[j][0]) { if(res[i] == -1) { res[i] = j; } else if(intervals[j][0] < intervals[res[i]][0]) res[i] = j; } } } return res; } }
bruteforce,太brute了
class Solution { public int[] findRightInterval(int[][] intervals) { int n = intervals.length; int[] res = new int[n]; TreeMap<Integer, Integer> map = new TreeMap(); for(int i = 0; i < n; i++) map.put(intervals[i][0], i); for(int i = 0; i < n; i++) { Integer ind = map.ceilingKey(intervals[i][1]); res[i] = ind == null ? -1 : map.get(ind); } return res; } }
题目说了所有start point都不一样,而且我们要找的是每个的最小start point,利用这个性质可以搞一个treemap,key是start point,value是index
存完之后就遍历,找有没有对应这个interval end point的ceilingKey(大于等于),有就get到对应的index存入res中。
好赖啊