Given an undirected graph
, return true
if and only if it is bipartite.
Recall that a graph is bipartite if we can split it's set of nodes into two independent subsets A and B such that every edge in the graph has one node in A and another node in B.
The graph is given in the following form: graph[i]
is a list of indexes j
for which the edge between nodes i
and j
exists. Each node is an integer between 0
and graph.length - 1
. There are no self edges or parallel edges: graph[i]
does not contain i
, and it doesn't contain any element twice.
Example 1: Input: [[1,3], [0,2], [1,3], [0,2]] Output: true Explanation: The graph looks like this: 0----1 | | | | 3----2 We can divide the vertices into two groups: {0, 2} and {1, 3}.
Example 2: Input: [[1,2,3], [0,2], [0,1,3], [0,2]] Output: false Explanation: The graph looks like this: 0----1 | | | | 3----2 We cannot find a way to divide the set of nodes into two independent subsets.
Note:
graph
will have length in range[1, 100]
.graph[i]
will contain integers in range[0, graph.length - 1]
.graph[i]
will not containi
or duplicate values.- The graph is undirected: if any element
j
is ingraph[i]
, theni
will be ingraph[j]
.
class Solution { public boolean isBipartite(int[][] graph) { //BFS // 0(not meet), 1(black), 2(white) int[] visited = new int[graph.length]; for (int i = 0; i < graph.length; i++) { if (graph[i].length != 0 && visited[i] == 0) { visited[i] = 1; Queue<Integer> q = new LinkedList<>(); q.offer(i); while(! q.isEmpty()) { int current = q.poll(); for (int c: graph[current]) { if (visited[c] == 0) { visited[c] = (visited[current] == 1) ? 2 : 1; q.offer(c); } else { if (visited[c] == visited[current]) return false; } } } } } return true; } }
BFS,涂色法,对每个点涂色,然后对current它所有的adjacent node涂成相反颜色,只要有一步的检查里和current颜色相同就返回false
public boolean isBipartite(int[][] g) { int[] colors = new int[g.length]; for (int i = 0; i < g.length; i++) if (colors[i] == 0 && !validColor(g, colors, 1, i)) return false; return true; } boolean validColor(int[][] g, int[] colors, int color, int node) { if (colors[node] != 0) return colors[node] == color; colors[node] = color; for (int adjacent : g[node]) if (!validColor(g, colors, -color, adjacent)) return false; return true; }
DFS