• 1203. Sort Items by Groups Respecting Dependencies


    There are n items each belonging to zero or one of m groups where group[i] is the group that the i-th item belongs to and it's equal to -1 if the i-th item belongs to no group. The items and the groups are zero indexed. A group can have no item belonging to it.

    Return a sorted list of the items such that:

    • The items that belong to the same group are next to each other in the sorted list.
    • There are some relations between these items where beforeItems[i] is a list containing all the items that should come before the i-th item in the sorted array (to the left of the i-th item).

    Return any solution if there is more than one solution and return an empty list if there is no solution.

    Example 1:

    Input: n = 8, m = 2, group = [-1,-1,1,0,0,1,0,-1], beforeItems = [[],[6],[5],[6],[3,6],[],[],[]]
    Output: [6,3,4,1,5,2,0,7]
    

    Example 2:

    Input: n = 8, m = 2, group = [-1,-1,1,0,0,1,0,-1], beforeItems = [[],[6],[5],[6],[3],[],[4],[]]
    Output: []
    Explanation: This is the same as example 1 except that 4 needs to be before 6 in the sorted list.
    

    Constraints:

    • 1 <= m <= n <= 3*10^4
    • group.length == beforeItems.length == n
    • -1 <= group[i] <= m-1
    • 0 <= beforeItems[i].length <= n-1
    • 0 <= beforeItems[i][j] <= n-1
    • i != beforeItems[i][j]
    • beforeItems[i] does not contain duplicates elements.
    class Solution {
        public int[] sortItems(int n, int m, int[] group, List<List<Integer>> beforeItems) {
            // 1.topology sort items
            // 2.topology sort group
            // 3.put sorted items to its group with output of 1 and 2
            // 4.iterate group inorder and add items in each group to the result array
            
            HashMap<Integer, List<Integer>> gGraph = new HashMap();
            HashMap<Integer, List<Integer>> iGraph = new HashMap();
            
            //put items belongs no group to its own group
            for(int i = 0; i < group.length; i++){
                if(group[i] == -1) group[i] = m++;
            }
            
            int[] itemInDegree = new int[n];
            int[] groupInDegree = new int[m];
            
            //build item graph
            for(int to = 0; to < beforeItems.size(); to++){
                int toGroup = group[to];
                for(int from:beforeItems.get(to)){
                    itemInDegree[to]++;
                    if(!iGraph.containsKey(from)){
                        iGraph.put(from, new ArrayList<Integer>());
                    }
                    iGraph.get(from).add(to);
                }
            }
            
            //build group graph
            for(int to = 0; to < group.length; to++){
                int toGroup = group[to];
                for(int from:beforeItems.get(to)){
                    int fromGroup = group[from];
                    if(!gGraph.containsKey(fromGroup)) gGraph.put(fromGroup, new ArrayList());
                    if(fromGroup != toGroup){
                        groupInDegree[toGroup]++;
                    }
                    gGraph.get(fromGroup).add(toGroup);
                }
            }
            
            List<Integer> iList = tpSort(iGraph, itemInDegree, n);
            List<Integer> gList = tpSort(gGraph, groupInDegree, m);
            
            if(iList.size() == 0 || gList.size() == 0) return new int[0];
            
            //key:group; val:list of items in this group
            HashMap<Integer, List<Integer>> groupedList = new HashMap();
            for(int item:iList){
                int grp = group[item];
                if(!groupedList.containsKey(grp)) groupedList.put(grp, new ArrayList());
                groupedList.get(grp).add(item);
            }
            
            int i = 0;
            int[] ans = new int[n];
            for(int grp:gList){
                if(!groupedList.containsKey(grp)) continue;
                for(int item: groupedList.get(grp)){
                    ans[i] = item;
                    i++;
                }
            }
            
            return ans;
        }
        
        public List<Integer> tpSort(HashMap<Integer, List<Integer>> graph, int[] inDegree, int count){
            List<Integer> ans = new ArrayList();
            Queue<Integer> q = new LinkedList();
            for(int i = 0; i < inDegree.length; i++){
                if(inDegree[i] == 0) q.offer(i);
            }
            while(!q.isEmpty()){
                int cur = q.poll();
                ans.add(cur);
                if(!graph.containsKey(cur)) continue;
                for(int next: graph.get(cur)){
                    inDegree[next]--;
                    if(inDegree[next] == 0) q.offer(next);
                }
            }
            return count == ans.size()? ans: new ArrayList();
        }
    }

    这题也太jb难了

    首先得抽象,理解题意,大概意思是有这么多item,item可能属于同一组也可能独立(-1),然后每个item可能有pre node也可能没有。

    解法:先对item进行拓扑排序,然后对group进行拓扑排序,然后巴拉巴拉小魔仙,对数重组输出

    https://www.youtube.com/watch?v=V2RAI4Pg0fI

  • 相关阅读:
    C# 关于委托和事件的妙文:通过一个例子详细介绍委托和事件的作用;Observer模式简介
    Path.Combine (合并两个路径字符串)方法的一些使用细节
    taskkill /f /im的应用
    powersheel远程连接方法操作
    Centos 定时任务发送smtp邮件
    Centos 发送smtp邮件
    在 Windows 上安装Rabbit MQ 指南
    Quartz.NET总结(五)基于Quartz.net 的开源任务管理平台
    Quartz.NET总结(四)Quartz 远程调度
    Quartz.NET总结(三)Quartz 配置
  • 原文地址:https://www.cnblogs.com/wentiliangkaihua/p/13223803.html
Copyright © 2020-2023  润新知