• 1368. Minimum Cost to Make at Least One Valid Path in a Grid


    Given a m x n grid. Each cell of the grid has a sign pointing to the next cell you should visit if you are currently in this cell. The sign of grid[i][j] can be:

    • 1 which means go to the cell to the right. (i.e go from grid[i][j] to grid[i][j + 1])
    • 2 which means go to the cell to the left. (i.e go from grid[i][j] to grid[i][j - 1])
    • 3 which means go to the lower cell. (i.e go from grid[i][j] to grid[i + 1][j])
    • 4 which means go to the upper cell. (i.e go from grid[i][j] to grid[i - 1][j])

    Notice that there could be some invalid signs on the cells of the grid which points outside the grid.

    You will initially start at the upper left cell (0,0). A valid path in the grid is a path which starts from the upper left cell (0,0) and ends at the bottom-right cell (m - 1, n - 1) following the signs on the grid. The valid path doesn't have to be the shortest.

    You can modify the sign on a cell with cost = 1. You can modify the sign on a cell one time only.

    Return the minimum cost to make the grid have at least one valid path.

    Example 1:

    Input: grid = [[1,1,1,1],[2,2,2,2],[1,1,1,1],[2,2,2,2]]
    Output: 3
    Explanation: You will start at point (0, 0).
    The path to (3, 3) is as follows. (0, 0) --> (0, 1) --> (0, 2) --> (0, 3) change the arrow to down with cost = 1 --> (1, 3) --> (1, 2) --> (1, 1) --> (1, 0) change the arrow to down with cost = 1 --> (2, 0) --> (2, 1) --> (2, 2) --> (2, 3) change the arrow to down with cost = 1 --> (3, 3)
    The total cost = 3.
    

    Example 2:

    Input: grid = [[1,1,3],[3,2,2],[1,1,4]]
    Output: 0
    Explanation: You can follow the path from (0, 0) to (2, 2).
    

    Example 3:

    Input: grid = [[1,2],[4,3]]
    Output: 1
    

    Example 4:

    Input: grid = [[2,2,2],[2,2,2]]
    Output: 3
    

    Example 5:

    Input: grid = [[4]]
    Output: 0
    

    Constraints:

    • m == grid.length
    • n == grid[i].length
    • 1 <= m, n <= 100
    class Solution {
        int[][] DIR = new int[][]{{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
        public int minCost(int[][] grid) {
            int m = grid.length, n = grid[0].length, cost = 0;
            int[][] dp = new int[m][n];
            for (int i = 0; i < m; i++) Arrays.fill(dp[i], Integer.MAX_VALUE);
            Queue<int[]> bfs = new LinkedList<>();
            dfs(grid, 0, 0, dp, cost, bfs);
            while (!bfs.isEmpty()) {
                cost++;
                for (int size = bfs.size(); size > 0; size--) {
                    int[] top = bfs.poll();
                    int r = top[0], c = top[1];
                    for (int i = 0; i < 4; i++) dfs(grid, r + DIR[i][0], c + DIR[i][1], dp, cost, bfs);
                }
            }
            return dp[m - 1][n - 1];
        }
    
        void dfs(int[][] grid, int r, int c, int[][] dp, int cost, Queue<int[]> bfs) {
            int m = grid.length, n = grid[0].length;
            if (r < 0 || r >= m || c < 0 || c >= n || dp[r][c] != Integer.MAX_VALUE) return;
            dp[r][c] = cost;
            bfs.offer(new int[]{r, c}); // add to try to change direction later
            int nextDir = grid[r][c] - 1;
            dfs(grid, r + DIR[nextDir][0], c + DIR[nextDir][1], dp, cost, bfs);
        }
    }

    https://leetcode.com/problems/minimum-cost-to-make-at-least-one-valid-path-in-a-grid/discuss/524886/JavaC%2B%2BPython-BFS-and-DFS

    https://leetcode.com/problems/minimum-cost-to-make-at-least-one-valid-path-in-a-grid/discuss/524820/Java-2-different-solutions-Clean-code

     

  • 相关阅读:
    树链剖分 关于点权与边权的转换
    2018 CCPC 吉林站 H Lovers || HDU 6562 (线段树哦)
    统计学习方法(一)概念
    python学习心得(三)
    python学习心得
    Python学习:基本概念
    Python学习(一)
    SparkMLlib聚类学习之KMeans聚类
    SparkMLlib回归算法之决策树
    SparkMLlib学习之线性回归
  • 原文地址:https://www.cnblogs.com/wentiliangkaihua/p/13090782.html
Copyright © 2020-2023  润新知