Given n
orders, each order consist in pickup and delivery services.
Count all valid pickup/delivery possible sequences such that delivery(i) is always after of pickup(i).
Since the answer may be too large, return it modulo 10^9 + 7.
Example 1:
Input: n = 1 Output: 1 Explanation: Unique order (P1, D1), Delivery 1 always is after of Pickup 1.
Example 2:
Input: n = 2 Output: 6 Explanation: All possible orders: (P1,P2,D1,D2), (P1,P2,D2,D1), (P1,D1,P2,D2), (P2,P1,D1,D2), (P2,P1,D2,D1) and (P2,D2,P1,D1). This is an invalid order (P1,D2,P2,D1) because Pickup 2 is after of Delivery 2.
Example 3:
Input: n = 3 Output: 90
Constraints:
1 <= n <= 500
class Solution { public int countOrders(int n) { long res = 1, mod = (long)1e9 + 7; for (int i = 1; i <= n; ++i) res = res * (i * 2 - 1) * i % mod; return (int)res; } }
class Solution { public int countOrders(int n) { long MODULO = (long) (1e9 + 7); long ans = 1; for (int i = 2; i <= n; i++) { int spaceNum = (i-1)*2 + 1; ans *= spaceNum * (spaceNum + 1) / 2; ans %= MODULO; } return (int) ans; } }