Given a binary search tree (BST) with duplicates, find all the mode(s) (the most frequently occurred element) in the given BST.
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than or equal to the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
For example:
Given BST [1,null,2,2]
,
1 2 / 2
return [2]
.
Note: If a tree has more than one mode, you can return them in any order.
Follow up: Could you do that without using any extra space? (Assume that the implicit stack space incurred due to recursion does not count).
public class Solution { Map<Integer, Integer> map; int max = 0; public int[] findMode(TreeNode root) { if(root==null) return new int[0]; this.map = new HashMap<>(); inorder(root); List<Integer> list = new LinkedList<>(); for(int key: map.keySet()){ if(map.get(key) == max) list.add(key); } int[] res = new int[list.size()]; for(int i = 0; i<res.length; i++) res[i] = list.get(i); return res; } private void inorder(TreeNode node){ if(node.left!=null) inorder(node.left); map.put(node.val, map.getOrDefault(node.val, 0)+1); max = Math.max(max, map.get(node.val)); if(node.right!=null) inorder(node.right); } }